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Outline of these lectures
1. Heavy quark physics

• Heavy-quark spin and flavor symmetry
• Spectroscopic implications

• Heavy Quark Effective Theory
• Vcb from exclusive semileptonic decay

2. Inclusive B-decays
• Operator Product Expansion
• Determination of Vub, Vcb from semileptonic decays
• Radiative decays: test of FCNC interactions
• Heavy hadron lifetimes

3. Exclusive hadronic B-decays
• Factorization, Soft Collinear Effective Theory



Exclusive b-decays
• An extremely rich field:

• mb ≫ ΛQCD: MANY decay channels!
• Classification (B stands for B, Bs , Λb)

• Leptonic: B→ l+l−, B→ lν
• Semi-leptonic: B→H lν
• Radiative: B→ H γ, B→ H l+l−

• Hadronic: M = π, K, ρ, η, ...
• charmless: B →M1 M2, ...
• D-modes: B →D M, ...
• charmonium modes: B →J/ψ M, ...
• baryonic modes: B → p p, B → Λc p , ...



Citation: W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) (URL: http://pdg.lbl.gov)

D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modes
Γ31 D0π+ ( 4.92 ± 0.20 ) × 10−3

Γ32 DCP(+1)π
+ [b] ( 4.0 ± 0.8 ) × 10−3

Γ33 DCP(−1)π
+ [b] ( 3.6 ± 0.8 ) × 10−3

Γ34 D0ρ+ ( 1.34 ± 0.18 ) %

Γ35 D0K+ ( 4.08 ± 0.24 ) × 10−4

Γ36 DCP(+1)K
+ [b] ( 3.7 ± 0.6 ) × 10−4

Γ37 DCP(−1)K
+ [b] ( 3.5 ± 0.5 ) × 10−4

Γ38 [K−π+ ]D K+ [c]

Γ39 [K+π− ]D K+ [c]

Γ40 [K−π+ ]D K∗(892)+ [c]

Γ41 [K+π− ]D K∗(892)+ [c]

Γ42 [K−π+ ]D π+ [c] ( 1.7 ± 0.5 ) × 10−5

Γ43 [π+π−π0 ]D K− ( 5.5 ± 1.2 ) × 10−6

Γ44 D0K∗(892)+ ( 6.3 ± 0.8 ) × 10−4

Γ45 DCP (−1)K
∗(892)+ [b] ( 2.0 ± 0.9 ) × 10−4

Γ46 DCP (+1)K
∗(892)+ [b] ( 6.2 ± 1.5 ) × 10−4

Γ47 D0K+K0 ( 5.5 ± 1.6 ) × 10−4

Γ48 D0K+K∗(892)0 ( 7.5 ± 1.7 ) × 10−4

Γ49 D0π+π+π− ( 1.1 ± 0.4 ) %

Γ50 D0 π+π+π−nonresonant ( 5 ± 4 ) × 10−3

Γ51 D0 π+ρ0 ( 4.2 ± 3.0 ) × 10−3

Γ52 D0 a1(1260)+ ( 4 ± 4 ) × 10−3

Γ53 D0ωπ+ ( 4.1 ± 0.9 ) × 10−3

Γ54 D∗(2010)−π+π+ ( 1.35 ± 0.22 ) × 10−3

Γ55 D−π+π+ ( 1.02 ± 0.16 ) × 10−3

Γ56 D+K0 < 5.0 × 10−6 CL=90%

Γ57 D∗(2007)0π+ ( 4.6 ± 0.4 ) × 10−3

Γ58 D∗0
CP (+1)π

+ [d]

Γ59 D∗0
CP (−1)π

+ [d]

Γ60 D∗(2007)0ωπ+ ( 4.5 ± 1.2 ) × 10−3

Γ61 D∗(2007)0ρ+ ( 9.8 ± 1.7 ) × 10−3

Γ62 D∗(2007)0K+ ( 3.7 ± 0.4 ) × 10−4

Γ63 D∗0
CP (+1)K

+ [d]

Γ64 D∗0
CP (−1)K

+ [d]

Γ65 D∗(2007)0K∗(892)+ ( 8.1 ± 1.4 ) × 10−4

Γ66 D∗(2007)0K+K0 < 1.06 × 10−3 CL=90%

Γ67 D∗(2007)0K+K∗(892)0 ( 1.5 ± 0.4 ) × 10−3

Γ68 D∗(2007)0π+π+π− ( 1.03 ± 0.12 ) %

Γ69 D∗(2007)0 a1(1260)+ ( 1.9 ± 0.5 ) %

Γ70 D∗(2007)0π−π+π+π0 ( 1.8 ± 0.4 ) %

Γ71 D∗03π+2π− ( 5.7 ± 1.2 ) × 10−3

HTTP://PDG.LBL.GOV Page 4 Created: 7/6/2006 16:35

Citation: W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) (URL: http://pdg.lbl.gov)

1.637±0.058+0.045
−0.043

8 ABE 98Q CDF pp at 1.8 TeV

1.66 ±0.06 ±0.03 9 ACCIARRI 98S L3 e+ e− → Z

1.66 ±0.06 ±0.05 9 ABE 97J SLD e+ e− → Z

1.58 +0.21
−0.18

+0.04
−0.03 94 6 BUSKULIC 96J ALEP e+ e− → Z

1.61 ±0.16 ±0.12 8,10 ABREU 95Q DLPH e+ e− → Z

1.72 ±0.08 ±0.06 11 ADAM 95 DLPH e+ e− → Z

1.52 ±0.14 ±0.09 8 AKERS 95T OPAL e+ e− → Z
• • • We do not use the following data for averages, fits, limits, etc. • • •
1.695±0.026±0.015 7 ABE 02H BELL Repl. by ABE 05B

1.68 ±0.07 ±0.02 6 ABE 98B CDF Repl. by ACOSTA 02C

1.56 ±0.13 ±0.06 8 ABE 96C CDF Repl. by ABE 98Q

1.58 ±0.09 ±0.03 12 BUSKULIC 96J ALEP e+ e− → Z
1.58 ±0.09 ±0.04 8 BUSKULIC 96J ALEP Repl. by BARATE 00R

1.70 ±0.09 13 ADAM 95 DLPH e+ e− → Z
1.61 ±0.16 ±0.05 148 6 ABE 94D CDF Repl. by ABE 98B

1.30 +0.33
−0.29 ±0.16 92 8 ABREU 93D DLPH Sup. by ABREU 95Q

1.56 ±0.19 ±0.13 134 11 ABREU 93G DLPH Sup. by ADAM 95

1.51 +0.30
−0.28

+0.12
−0.14 59 8 ACTON 93C OPAL Sup. by AKERS 95T

1.47 +0.22
−0.19

+0.15
−0.14 77 8 BUSKULIC 93D ALEP Sup. by BUSKULIC 96J

4Measurement performed using a combined fit of CP-violation, mixing and lifetimes.
5Measurement performed using an inclusive reconstruction and B flavor identification
technique.

6Measured mean life using fully reconstructed decays.
7 Events are selected in which one B meson is fully reconstructed while the second B meson
is reconstructed inclusively.

8Data analyzed using D /D∗ !X event vertices.
9Data analyzed using charge of secondary vertex.

10ABREU 95Q assumes B(B0 → D∗∗− !+ ν!) = 3.2 ± 1.7%.
11Data analyzed using vertex-charge technique to tag B charge.
12Combined result of D/D∗ !X analysis and fully reconstructed B analysis.
13Combined ABREU 95Q and ADAM 95 result.

B+ DECAY MODESB+ DECAY MODESB+ DECAY MODESB+ DECAY MODES

B− modes are charge conjugates of the modes below. Modes which do not
identify the charge state of the B are listed in the B±/B0 ADMIXTURE
section.

The branching fractions listed below assume 50% B0B0 and 50% B+ B−
production at the Υ(4S). We have attempted to bring older measurements
up to date by rescaling their assumed Υ(4S) production ratio to 50:50

and their assumed D, Ds , D∗, and ψ branching ratios to current values
whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All
resonant subchannels have been corrected for resonance branching frac-
tions to the final state so the sum of the subchannel branching fractions
can exceed that of the final state.
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For inclusive branching fractions, e.g., B → D± anything, the values
usually are multiplicities, not branching fractions. They can be greater
than one.

Scale factor/
Mode Fraction (Γi /Γ) Confidence level

Semileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modes
Γ1 !+ ν! anything [a] ( 10.9 ± 0.4 ) %

Γ2 D0 !+ν! [a] ( 2.15 ± 0.22 ) %

Γ3 D∗(2007)0 !+ν! [a] ( 6.5 ± 0.5 ) %

Γ4 D1(2420)0 !+ν! ( 5.6 ± 1.6 ) × 10−3

Γ5 D∗
2(2460)0 !+ν! < 8 × 10−3 CL=90%

Γ6 D−π+ !+ ν! ( 5.3 ± 1.0 ) × 10−3

Γ7 D∗−π+ !+ν! ( 6.4 ± 1.5 ) × 10−3

Γ8 π0 !+ν! ( 7.4 ± 1.1 ) × 10−5

Γ9 π0 e+ νe
Γ10 η !+ν! ( 8 ± 4 ) × 10−5

Γ11 ω!+ν! [a] ( 1.3 ± 0.6 ) × 10−4

Γ12 ωµ+νµ

Γ13 ρ0 !+ν! [a] ( 1.24 ± 0.23 ) × 10−4

Γ14 pp e+νe < 5.2 × 10−3 CL=90%

Γ15 e+ νe < 1.5 × 10−5 CL=90%

Γ16 µ+ νµ < 6.6 × 10−6 CL=90%

Γ17 τ+ ντ < 2.6 × 10−4 CL=90%

Γ18 e+ νe γ < 2.0 × 10−4 CL=90%

Γ19 µ+ νµ γ < 5.2 × 10−5 CL=90%

Inclusive modesInclusive modesInclusive modesInclusive modes
Γ20 D0X ( 9.8 ± 1.1 ) %

Γ21 D0X ( 79 ± 5 ) %

Γ22 D+X ( 3.8 ± 1.0 ) %

Γ23 D−X ( 9.8 ± 1.8 ) %

Γ24 D+
s X ( 14 + 5

− 4 ) %

Γ25 D−
s X < 2.2 % CL=90%

Γ26 Λ+
c X ( 2.9 + 1.4

− 1.1 ) %

Γ27 Λ−
c X ( 3.5 + 1.5

− 1.2 ) %

Γ28 c X ( 98 ± 6 ) %

Γ29 c X ( 33 + 6
− 4 ) %

Γ30 c c X (131 +10
− 8 ) %
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The B factory era

⇒ B

ZL — p.7

(from Z. Ligeti)
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Γ96 DsJ (2457)+D0×
B(DsJ (2457)+ → D∗+

s γ)
< 9.8 × 10−4 CL=90%

Γ97 DsJ (2457)+D∗(2010)0×
B(DsJ (2457)+ → D∗+

s π0)
( 7.6 + 3.6

− 2.9 ) × 10−3

Γ98 DsJ (2457)+D∗(2010)0×
B(DsJ (2457)+ → D+

s γ)
( 1.4 + 0.7

− 0.6 ) × 10−3

Γ99 D0DsJ (2536)+×
B(DsJ (2536)+ →
D∗(2007)0K+)

< 2 × 10−4 CL=90%

Γ100 D∗(2007)0DsJ (2536)+×
B(DsJ (2536)+ →
D∗(2007)0K+)

< 7 × 10−4 CL=90%

Γ101 D0DsJ (2573)+×
B(DsJ (2573)+ → D0K+)

< 2 × 10−4 CL=90%

Γ102 D∗(2007)0DsJ (2573)+×
B(DsJ (2573)+ → D0K+)

< 5 × 10−4 CL=90%

Γ103 D0D∗+
s ( 7.2 ± 2.6 ) × 10−3

Γ104 D∗(2007)0D+
s ( 10 ± 4 ) × 10−3

Γ105 D∗(2007)0D∗+
s ( 2.2 ± 0.7 ) %

Γ106 D
(∗)+
s D∗∗0 ( 2.7 ± 1.2 ) %

Γ107 D∗(2007)0D∗(2010)+ < 1.1 % CL=90%

Γ108 D0D∗(2010)+ +
D∗(2007)0D+

< 1.3 % CL=90%

Γ109 D0D∗(2010)+ ( 4.6 ± 0.9 ) × 10−4

Γ110 D0D+ ( 4.8 ± 1.0 ) × 10−4

Γ111 D0D+K0 < 2.8 × 10−3 CL=90%

Γ112 D∗(2007)0D+K0 < 6.1 × 10−3 CL=90%

Γ113 D0D∗(2010)+K0 ( 5.2 ± 1.2 ) × 10−3

Γ114 D∗(2007)0D∗(2010)+K0 ( 7.8 ± 2.6 ) × 10−3

Γ115 D0D0K+ ( 1.37 ± 0.32 ) × 10−3 S=1.5

Γ116 D∗(2010)0D0K+ < 3.8 × 10−3 CL=90%

Γ117 D0D∗(2007)0K+ ( 4.7 ± 1.0 ) × 10−3

Γ118 D∗(2007)0D∗(2007)0K+ ( 5.3 ± 1.6 ) × 10−3

Γ119 D−D+K+ < 4 × 10−4 CL=90%

Γ120 D−D∗(2010)+K+ < 7 × 10−4 CL=90%

Γ121 D∗(2010)−D+K+ ( 1.5 ± 0.4 ) × 10−3

Γ122 D∗(2010)−D∗(2010)+K+ < 1.8 × 10−3 CL=90%

Γ123 (D +D∗ )(D+D∗ )K ( 3.5 ± 0.6 ) %

Γ124 D+
s π0 < 1.7 × 10−4 CL=90%

Γ125 D∗+
s π0 < 2.7 × 10−4 CL=90%

Γ126 D+
s η < 4 × 10−4 CL=90%

Γ127 D∗+
s η < 6 × 10−4 CL=90%
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Γ72 D∗(2010)+π0 < 1.7 × 10−4 CL=90%

Γ73 D∗(2010)+K0 < 9.0 × 10−6 CL=90%

Γ74 D∗(2010)−π+π+π0 ( 1.5 ± 0.7 ) %

Γ75 D∗(2010)−π+π+π+π− ( 2.6 ± 0.4 ) × 10−3

Γ76 D∗
1(2420)0π+ ( 1.5 ± 0.6 ) × 10−3 S=1.3

Γ77 D1(2420)0π+×B(D0
1 →

D0π+π−)

( 1.9 + 0.5
− 0.6 ) × 10−4

Γ78 D∗
2(2462)0π+

× B(D∗
2(2462)0 → D−π+)

( 3.4 ± 0.8 ) × 10−4

Γ79 D∗
0(2308)0π+

× B(D∗
0(2308)0 → D−π+)

( 6.1 ± 1.9 ) × 10−4

Γ80 D1(2421)0π+

× B(D1(2421)0 → D∗−π+)
( 6.8 ± 1.5 ) × 10−4

Γ81 D∗
2(2462)0π+

× B(D∗
2(2462)0 → D∗−π+)

( 1.8 ± 0.5 ) × 10−4

Γ82 D ′
1(2427)0π+

× B(D ′
1(2427)0 → D∗−π+)

( 5.0 ± 1.2 ) × 10−4

Γ83 D1(2420)0π+×B(D0
1 →

D∗0π+π−)

< 6 × 10−6 CL=90%

Γ84 D∗
1(2420)0ρ+ < 1.4 × 10−3 CL=90%

Γ85 D∗
2(2460)0π+ < 1.3 × 10−3 CL=90%

Γ86 D∗
2(2460)0π+×B(D∗0

2 →
D∗0π+π−)

< 2.2 × 10−5 CL=90%

Γ87 D∗
2(2460)0ρ+ < 4.7 × 10−3 CL=90%

Γ88 D0D+
s ( 1.09 ± 0.27 ) %

Γ89 Ds0(2317)+D0×
B(Ds0(2317)+ → D+

s π0)
( 7.4 + 2.3

− 1.9 ) × 10−4

Γ90 Ds0(2317)+D0×
B(Ds0(2317)+ → D∗+

s γ)
< 7.6 × 10−4 CL=90%

Γ91 Ds0(2317)+D∗(2010)0×
B(Ds0(2317)+ → D+

s π0)
( 9 ± 7 ) × 10−4

Γ92 DsJ (2457)+D0×
B(DsJ (2457)+ → D∗+

s π0)
( 1.4 + 0.6

− 0.5 ) × 10−3 S=1.3

Γ93 DsJ (2457)+D0×
B(DsJ (2457)+ → D+

s γ)
( 4.7 + 1.4

− 1.2 ) × 10−4

Γ94 DsJ (2457)+D0×
B(DsJ (2457)+ →
D+

s π+π−)

< 2.2 × 10−4 CL=90%

Γ95 DsJ (2457)+D0×
B(DsJ (2457)+ → D+

s π0)
< 2.7 × 10−4 CL=90%
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Γ161 J/ψ(1S)φK+ ( 5.2 ± 1.7 ) × 10−5 S=1.2

Γ162 J/ψ(1S)π+ ( 4.9 ± 0.6 ) × 10−5 S=1.5

Γ163 J/ψ(1S)ρ+ < 7.7 × 10−4 CL=90%

Γ164 J/ψ(1S)a1(1260)+ < 1.2 × 10−3 CL=90%

Γ165 J/ψ(1S)pΛ ( 1.18 ± 0.31 ) × 10−5

Γ166 J/ψ(1S)Σ0 p < 1.1 × 10−5 CL=90%

Γ167 J/ψ(1S)D+ < 1.2 × 10−4 CL=90%

Γ168 J/ψ(1S)D0π+ < 2.5 × 10−5 CL=90%

Γ169 ψ(2S)K+ ( 6.48 ± 0.35 ) × 10−4

Γ170 ψ(2S)K∗(892)+ ( 6.7 ± 1.4 ) × 10−4 S=1.3

Γ171 ψ(2S)K+π+π− ( 1.9 ± 1.2 ) × 10−3

Γ172 ψ(3770)K+ ( 4.9 ± 1.3 ) × 10−4

Γ173 ψ(3770)K+

× B(ψ(3770) → D0D0)
( 3.4 ± 0.9 ) × 10−4

Γ174 ψ(3770)K+

× B(ψ(3770) → D+D−K+)
( 1.4 ± 0.8 ) × 10−4

Γ175 χc0π+×B(χc0 → π+π−) < 3 × 10−7 CL=90%

Γ176 χc0(1P)K+ ( 1.6 + 0.5
− 0.4 ) × 10−4

Γ177 χc0K∗(892)+ < 2.86 × 10−3 CL=90%

Γ178 χc2K+ < 2.9 × 10−5 CL=90%

Γ179 χc2K∗(892)+ < 1.2 × 10−5 CL=90%

Γ180 χc1(1P)K+ ( 5.3 ± 0.7 ) × 10−4 S=1.7

Γ181 χc1(1P)K∗(892)+ ( 3.6 ± 0.9 ) × 10−4

K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modes
Γ182 K0 π+ ( 2.41 ± 0.17 ) × 10−5 S=1.4

Γ183 K+π0 ( 1.21 ± 0.08 ) × 10−5

Γ184 η′K+ ( 7.05 ± 0.35 ) × 10−5

Γ185 η′K∗(892)+ < 1.4 × 10−5 CL=90%

Γ186 ηK+ ( 2.6 ± 0.6 ) × 10−6 S=1.3

Γ187 ηK∗(892)+ ( 2.6 ± 0.4 ) × 10−5

Γ188 ωK+ ( 5.1 ± 0.7 ) × 10−6

Γ189 ωK∗(892)+ < 7.4 × 10−6 CL=90%

Γ190 a+
0 K0 < 3.9 × 10−6 CL=90%

Γ191 a0
0K+ < 2.5 × 10−6 CL=90%

Γ192 K∗(892)0π+ ( 1.16 ± 0.19 ) × 10−5 S=1.8

Γ193 K∗(892)+π0 ( 6.9 ± 2.4 ) × 10−6

Γ194 K+π−π+ ( 5.6 ± 0.9 ) × 10−5 S=2.6

Γ195 K+π−π+nonresonant ( 3.1 + 1.0
− 0.8 ) × 10−6

Γ196 K+ f0(980)× B(f0 → π+π−) ( 8.9 ± 1.0 ) × 10−6

Γ197 f2(1270)0K+ < 2.3 × 10−6 CL=90%

Γ198 f ∗0(1370)0K+×
B(f ∗0(1370)0 → π+π−)

< 1.07 × 10−5 CL=90%
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Γ128 D+
s ρ0 < 3.1 × 10−4 CL=90%

Γ129 D∗+
s ρ0 < 4 × 10−4 CL=90%

Γ130 D+
s ω < 4 × 10−4 CL=90%

Γ131 D∗+
s ω < 6 × 10−4 CL=90%

Γ132 D+
s a1(1260)0 < 1.8 × 10−3 CL=90%

Γ133 D∗+
s a1(1260)0 < 1.3 × 10−3 CL=90%

Γ134 D+
s φ < 1.9 × 10−6 CL=90%

Γ135 D∗+
s φ < 1.2 × 10−5 CL=90%

Γ136 D+
s K 0 < 9 × 10−4 CL=90%

Γ137 D∗+
s K0 < 9 × 10−4 CL=90%

Γ138 D+
s K ∗(892)0 < 4 × 10−4 CL=90%

Γ139 D∗+
s K∗(892)0 < 4 × 10−4 CL=90%

Γ140 D−
s π+K+ < 7 × 10−4 CL=90%

Γ141 D∗−
s π+K+ < 9.8 × 10−4 CL=90%

Γ142 D−
s π+K∗(892)+ < 5 × 10−3 CL=90%

Γ143 D∗−
s π+K∗(892)+ < 7 × 10−3 CL=90%

Charmonium modesCharmonium modesCharmonium modesCharmonium modes
Γ144 ηc K+ ( 9.1 ± 1.3 ) × 10−4

Γ145 η′c K+ ( 3.4 ± 1.8 ) × 10−4

Γ146 J/ψ(1S)K+ ( 1.008± 0.035) × 10−3

Γ147 J/ψ(1S)K+π+π− ( 1.07 ± 0.19 ) × 10−3 S=1.9

Γ148 hc (1P)K+× B(hc (1P) →
J/ψπ+π−)

< 3.4 × 10−6 CL=90%

Γ149 X (3872)K+ < 3.2 × 10−4 CL=90%

Γ150 X (3872)K+× B(X →
J/ψπ+π−)

( 1.14 ± 0.20 ) × 10−5

Γ151 X (3872)K+

× B(X (3872) → D0D0)
< 6.0 × 10−5 CL=90%

Γ152 X (3872)K+

× B(X (3872) → D+D−)
< 4.0 × 10−5 CL=90%

Γ153 X (3872)K+

× B(X (3872) → D0D0 π0)
< 6.0 × 10−5 CL=90%

Γ154 X (3872)K+

× B(X (3872) → J/ψ(1S)η)
< 7.7 × 10−6 CL=90%

Γ155 X (3872)+K0× B(X (3872)+ →
J/ψ(1S)π+π0)

[e] < 2.2 × 10−5 CL=90%

Γ156 Y (4260)0K+× B(Y 0 →
J/ψπ+π−)

< 2.9 × 10−5 CL=95%

Γ157 J/ψ(1S)K∗(892)+ ( 1.41 ± 0.08 ) × 10−3

Γ158 J/ψ(1S)K (1270)+ ( 1.8 ± 0.5 ) × 10−3

Γ159 J/ψ(1S)K (1400)+ < 5 × 10−4 CL=90%

Γ160 J/ψ(1S)ηK+ ( 1.08 ± 0.33 ) × 10−4

HTTP://PDG.LBL.GOV Page 7 Created: 7/6/2006 16:35



Citation: W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) (URL: http://pdg.lbl.gov)

Γ234 K+K−K+nonresonant ( 2.40 + 0.30
− 0.62 ) × 10−5

Γ235 K∗(892)+K+K− < 1.6 × 10−3 CL=90%

Γ236 K∗(892)+φ ( 9.6 ± 3.0 ) × 10−6 S=1.9

Γ237 K1(1400)+φ < 1.1 × 10−3 CL=90%

Γ238 K∗
2(1430)+φ < 3.4 × 10−3 CL=90%

Γ239 K+φφ ( 2.6 + 1.1
− 0.9 ) × 10−6

Γ240 K∗(892)+γ ( 4.03 ± 0.26 ) × 10−5

Γ241 K1(1270)+γ ( 4.3 ± 1.3 ) × 10−5

Γ242 ηK+γ ( 8.4 ± 1.8 ) × 10−6

Γ243 φK+γ ( 3.4 ± 1.0 ) × 10−6

Γ244 K+π−π+γ ( 2.50 ± 0.28 ) × 10−5

Γ245 K∗(892)0 π+γ ( 2.0 + 0.7
− 0.6 ) × 10−5

Γ246 K+ρ0γ < 2.0 × 10−5 CL=90%

Γ247 K+π−π+γ nonresonant < 9.2 × 10−6 CL=90%

Γ248 K1(1400)+γ < 1.5 × 10−5

Γ249 K∗
2(1430)+γ ( 1.4 ± 0.4 ) × 10−5

Γ250 K∗(1680)+γ < 1.9 × 10−3 CL=90%

Γ251 K∗
3(1780)+γ < 3.9 × 10−5 CL=90%

Γ252 K∗
4(2045)+γ < 9.9 × 10−3 CL=90%

Light unflavored meson modesLight unflavored meson modesLight unflavored meson modesLight unflavored meson modes
Γ253 ρ+γ < 1.8 × 10−6 CL=90%

Γ254 π+π0 ( 5.5 ± 0.6 ) × 10−6

Γ255 π+π+π− ( 1.62 ± 0.15 ) × 10−5

Γ256 ρ0π+ ( 8.7 ± 1.1 ) × 10−6

Γ257 π+ f0(980)× B(f0(980) →
π+π−)

< 3.0 × 10−6 CL=90%

Γ258 π+ f2(1270) ( 8.2 ± 2.5 ) × 10−6

Γ259 ρ(1450)0 π+ < 2.3 × 10−6 CL=90%

Γ260 f0(1370)π+×B(f0(1370) →
π+π−)

< 3.0 × 10−6 CL=90%

Γ261 f0(600)π+×B(f0(600) →
π+π−)

< 4.1 × 10−6 CL=90%

Γ262 π+π−π+nonresonant < 4.6 × 10−6 CL=90%

Γ263 π+π0π0 < 8.9 × 10−4 CL=90%

Γ264 ρ+π0 ( 1.20 ± 0.19 ) × 10−5

Γ265 π+π−π+π0 < 4.0 × 10−3 CL=90%

Γ266 ρ+ρ0 ( 2.6 ± 0.6 ) × 10−5

Γ267 a1(1260)+π0 < 1.7 × 10−3 CL=90%

Γ268 a1(1260)0π+ < 9.0 × 10−4 CL=90%

Γ269 ωπ+ ( 5.9 ± 1.0 ) × 10−6 S=1.2

Γ270 ωρ+ ( 1.3 ± 0.4 ) × 10−5
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Γ199 ρ0(1450)K+× B(ρ0(1450) →
π+π−)

< 1.17 × 10−5 CL=90%

Γ200 f0(1500)K+× B(f0(1500) →
π+π−)

< 4.4 × 10−6 CL=90%

Γ201 f ′2(1525)K+× B(f ′2(1525) →
π+π−)

< 3.4 × 10−6 CL=90%

Γ202 K+ρ0 ( 5.0 + 0.7
− 0.8 ) × 10−6

Γ203 K∗
0(1430)0π+ ( 3.8 ± 0.5 ) × 10−5

Γ204 K∗
2(1430)0π+ < 6.9 × 10−6 CL=90%

Γ205 K∗(1410)0π+ < 4.5 × 10−5 CL=90%

Γ206 K∗(1680)0π+ < 1.2 × 10−5 CL=90%

Γ207 K−π+π+ < 1.8 × 10−6 CL=90%

Γ208 K−π+π+nonresonant < 5.6 × 10−5 CL=90%

Γ209 K1(1400)0 π+ < 2.6 × 10−3 CL=90%

Γ210 K0 π+π0 < 6.6 × 10−5 CL=90%

Γ211 K0ρ+ < 4.8 × 10−5 CL=90%

Γ212 K∗(892)+π+π− < 1.1 × 10−3 CL=90%

Γ213 K∗(892)+ρ0 ( 1.1 ± 0.4 ) × 10−5

Γ214 K∗(892)0ρ+ ( 8.9 ± 2.1 ) × 10−6

Γ215 K∗(892)+K∗(892)0 < 7.1 × 10−5 CL=90%

Γ216 K1(1400)+ρ0 < 7.8 × 10−4 CL=90%

Γ217 K∗
2(1430)+ρ0 < 1.5 × 10−3 CL=90%

Γ218 K+K0 ( 1.20 ± 0.32 ) × 10−6

Γ219 K0 K+π0 < 2.4 × 10−5 CL=90%

Γ220 K+K0
S K0

S ( 1.15 ± 0.13 ) × 10−5

Γ221 K0
S K0

S π+ < 3.2 × 10−6 CL=90%

Γ222 K+K−π+ < 6.3 × 10−6 CL=90%

Γ223 K+K−π+nonresonant < 7.5 × 10−5 CL=90%

Γ224 K+K+π− < 1.3 × 10−6 CL=90%

Γ225 K+K+π−nonresonant < 8.79 × 10−5 CL=90%

Γ226 K+K∗(892)0 < 5.3 × 10−6 CL=90%

Γ227 K+ fJ (2220)
Γ228 K+K−K+ ( 3.01 ± 0.19 ) × 10−5

Γ229 K+φ ( 9.0 ± 0.8 ) × 10−6 S=1.3

Γ230 f0(980)K+× B(f0(980) →
K+K−)

< 2.9 × 10−6 CL=90%

Γ231 a2(1320)K+× B(a2(1320) →
K+K−)

< 1.1 × 10−6 CL=90%

Γ232 f ′2(1525)K+× B(f ′2(1525) →
K+K−)

< 4.9 × 10−6 CL=90%

Γ233 φ(1680)K+× B(φ(1680) →
K+K−)

< 8 × 10−7 CL=90%
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Γ305 Λ−
c pπ+ ( 2.1 ± 0.7 ) × 10−4

Γ306 Λ−
c pπ+π0 ( 1.8 ± 0.6 ) × 10−3

Γ307 Λ−
c pπ+π+π− ( 2.3 ± 0.7 ) × 10−3

Γ308 Λ−
c pπ+π+π−π0 < 1.34 % CL=90%

Γ309 Σ c(2455)0p < 8 × 10−5 CL=90%

Γ310 Σ c(2520)0p < 4.6 × 10−5 CL=90%

Γ311 Σ c(2455)0pπ0 ( 4.4 ± 1.8 ) × 10−4

Γ312 Σ c(2455)0pπ−π+ ( 4.4 ± 1.7 ) × 10−4

Γ313 Σ c(2455)−−pπ+π+ ( 2.8 ± 1.2 ) × 10−4

Γ314 Λc(2593)− /Λc(2625)−pπ+ < 1.9 × 10−4 CL=90%

Lepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, or
∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes

Γ315 π+ e+ e− B1 < 3.9 × 10−3 CL=90%

Γ316 π+µ+µ− B1 < 9.1 × 10−3 CL=90%

Γ317 π+ν ν B1 < 1.0 × 10−4 CL=90%

Γ318 K+ e+ e− B1 ( 8.0 + 2.2
− 1.9 ) × 10−7 S=1.4

Γ319 K+µ+µ− B1 ( 3.4 + 1.9
− 1.4 ) × 10−7 S=1.7

Γ320 K+ #+ #− B1 [a] ( 5.3 ± 1.1 ) × 10−7

Γ321 K+ ν ν B1 < 5.2 × 10−5 CL=90%

Γ322 K∗(892)+ e+ e− B1 < 4.6 × 10−6 CL=90%

Γ323 K∗(892)+µ+µ− B1 < 2.2 × 10−6 CL=90%

Γ324 K∗(892)+ #+ #− B1 [a] < 2.2 × 10−6 CL=90%

Γ325 π+ e+µ− LF < 6.4 × 10−3 CL=90%

Γ326 π+ e−µ+ LF < 6.4 × 10−3 CL=90%

Γ327 K+ e+µ− LF < 8 × 10−7 CL=90%

Γ328 K+ e−µ+ LF < 6.4 × 10−3 CL=90%

Γ329 K∗(892)+ e±µ∓ LF < 7.9 × 10−6 CL=90%

Γ330 π− e+ e+ L < 1.6 × 10−6 CL=90%

Γ331 π−µ+µ+ L < 1.4 × 10−6 CL=90%

Γ332 π− e+µ+ L < 1.3 × 10−6 CL=90%

Γ333 ρ− e+ e+ L < 2.6 × 10−6 CL=90%

Γ334 ρ−µ+µ+ L < 5.0 × 10−6 CL=90%

Γ335 ρ− e+µ+ L < 3.3 × 10−6 CL=90%

Γ336 K− e+ e+ L < 1.0 × 10−6 CL=90%

Γ337 K−µ+µ+ L < 1.8 × 10−6 CL=90%

Γ338 K− e+µ+ L < 2.0 × 10−6 CL=90%

Γ339 K∗(892)− e+ e+ L < 2.8 × 10−6 CL=90%

Γ340 K∗(892)−µ+µ+ L < 8.3 × 10−6 CL=90%

Γ341 K∗(892)− e+µ+ L < 4.4 × 10−6 CL=90%
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Γ271 ηπ+ ( 4.9 ± 0.5 ) × 10−6

Γ272 η′π+ ( 4.0 ± 0.9 ) × 10−6

Γ273 η′ρ+ < 2.2 × 10−5 CL=90%

Γ274 ηρ+ ( 8.4 ± 2.2 ) × 10−6

Γ275 φπ+ < 4.1 × 10−7 CL=90%

Γ276 φρ+ < 1.6 × 10−5

Γ277 a0
0π+ < 5.8 × 10−6 CL=90%

Γ278 π+π+π+π−π− < 8.6 × 10−4 CL=90%

Γ279 ρ0 a1(1260)+ < 6.2 × 10−4 CL=90%

Γ280 ρ0 a2(1320)+ < 7.2 × 10−4 CL=90%

Γ281 π+π+π+π−π−π0 < 6.3 × 10−3 CL=90%

Γ282 a1(1260)+ a1(1260)0 < 1.3 % CL=90%

Charged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modes

h± = K± or π±

Γ283 h+π0 ( 1.6 + 0.7
− 0.6 ) × 10−5

Γ284 ωh+ ( 1.38 + 0.27
− 0.24 ) × 10−5

Γ285 h+X0 (Familon) < 4.9 × 10−5 CL=90%

Baryon modesBaryon modesBaryon modesBaryon modes

Γ286 ppπ+ ( 3.1 + 0.8
− 0.7 ) × 10−6

Γ287 ppπ+nonresonant < 5.3 × 10−5 CL=90%

Γ288 ppπ+π+π− < 5.2 × 10−4 CL=90%

Γ289 ppK+ ( 5.6 ± 1.0 ) × 10−6 S=2.4

Γ290 Θ(1710)++p×
B(Θ(1710)++ → pK+)

[f ] < 9.1 × 10−8 CL=90%

Γ291 fJ (2220)K+× B(fJ (2220) →
pp)

[f ] < 4.1 × 10−7 CL=90%

Γ292 pΛ(1520) < 1.5 × 10−6 CL=90%

Γ293 ppK+nonresonant < 8.9 × 10−5 CL=90%

Γ294 ppK∗(892)+ ( 1.03 + 0.38
− 0.33 ) × 10−5

Γ295 pΛ < 4.9 × 10−7 CL=90%

Γ296 pΛγ ( 2.2 ± 0.6 ) × 10−6

Γ297 pΣ γ < 4.6 × 10−6 CL=90%

Γ298 pΛπ+π− < 2.0 × 10−4 CL=90%

Γ299 ΛΛπ+ < 2.8 × 10−6 CL=90%

Γ300 ΛΛK+ ( 2.9 + 1.0
− 0.8 ) × 10−6

Γ301 ∆0 p < 3.8 × 10−4 CL=90%

Γ302 ∆++p < 1.5 × 10−4 CL=90%

Γ303 D+pp < 1.5 × 10−5 CL=90%

Γ304 D∗(2010)+pp < 1.5 × 10−5 CL=90%
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Hadronic B-decays at hadron machines

• Lots of Bs -decays and Λb -decays remain to be discovered
• Bs decay listing is 16 pages in PDG, Λb listing is 7 pages long.
• B0 listing is 146 pages!

• Hadron machines are much noisier enviroment than e+e− , 
but produce more b-hadrons
• Fewer channels can be reconstructed, but competitive in those.

see M. Herndon’s lecture, 
also G. Punzi‘s wine & cheese, Oct ‘06



Challenging for theory!
• Exclusive final states

• Hadronization effects are important, even in 
the heavy quark limit. Cannot use OPE.

• >1 hadron in final state
• Difficult for lattice 

• Energetic light hadrons EM≈mB/2
• HQET not applicable (expansion in EM/

mB)
• Difficult for lattice EM≥ 1/a



• Weak effective Hamiltonian
• 10 different operators for B →M1 M2 . (Tree, QCD 

penguins and EW penguin operators.)
• Symmetries of QCD

• C, P, T
• Approximate flavor symmetries: 

• Isospin: 
• SU(3): 

• Factorization theorems in the limit mb→∞. 
Soft-collinear effective theory (SCET). 

• Expansion in

Theoretical methods
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SCET Analysis of B → Kπ, B → KK̄, and B → ππ Decays

Christian W. Bauer,1 Ira Z. Rothstein,2 and Iain W. Stewart3

1Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
2Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213

3Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology,
Cambridge, MA 02139

B → Kπ and related decays are studied in the heavy quark limit of QCD using the soft collinear
effective theory (SCET). We focus on results that follow solely from integrating out the scale mb,
without expanding the amplitudes for the physics at smaller scales such as αs(

√

EπΛQCD). The
reduction in the number of hadronic parameters in SCET leads to multiple predictions without the
need of SU(3). We find that the CP-asymmetry in B− → π0K− should have a similar magnitude
and the same sign as the well measured asymmetry in B̄0 → π+K−. Our prediction for Br(K+π−)
exceeds the current experimental value at the 2σ level. We also use our results to determine the
corrections to the Lipkin and CP-asymmetry sum rules in the standard model and find them to be
quite small, thus sharpening their utility as a tool to look for new physics.

I. INTRODUCTION

Two body nonleptonic decays are the most widely used
processes to study CP violation in the B system. Due
to the large mass of the B-meson there is a plethora of
open channels, each of which provides unique ways for
testing the consistency of the standard model. For each
channel observables include the CP averaged branching
ratios (Br), direct CP asymmetry (ACP = −C), and for
certain neutral B decays, the time dependent CP asym-
metry (S). For the decays we are interested in

Br ≡
1

ΓB

s|!p|
8πm2

B

( |A|2 + |A|2

2

)

, λCP =
q

p

A

A
, (1)

ACP ≡
|A|2 − |A|2

|A|2 + |A|2
, S =

2 Im(λCP )

1 + |λCP |2
,

ΓB0(t) − ΓB̄0(t)

ΓB0(t) + ΓB̄0(t)
≡ −S sin(∆m t) + C cos(∆m t) ,

where A is the amplitude of the decay process A =
A(B̄ → M1M2), A is the amplitude for CP-conjugate
process, and q/p is the mixing parameter for B0 − B̄0

and/or K0−K̄0 mixing. The other parameters in Eq.(1)
are |!p|, the final meson momentum in the B rest frame,
s, a possible identical particle symmetry factor, and ∆m,
the difference between mass eigenstates in the neutral B
two-state system.

Using the unitarity of the CKM matrix to remove top-
quark CKM elements, the amplitude for any decay can
be written with the CKM elements factored out as

A = λ(f)
u Au + λ(f)

c Ac , (2)

where λ(f)
p = V ∗

pbVpf . Theoretical predictions for the
observables in (1) are often hampered by our ability to
calculate Au,c. In general the CP-asymmetries depend on
the ratio of amplitudes |Au/Ac| and their relative strong

phase δ. In fact ACP ∝ sin(δ), and so non-negligible
strong dynamics are required for the existence of a direct
CP asymmetry.

The parameters Au and Ac are in principle different
for each decay channel. In order to accurately deter-
mine Au and Ac we need model independent methods
to handle the strong dynamics in these decays. All such
methods involve systematic expansions of QCD in ratios
of quark masses and the scale Λ % ΛQCD associated with
hadronization. This includes flavor symmetries for the
light quarks, SU(2) and SU(3), from mq/Λ & 1, as well
as expansions for the heavy b-quark from Λ/mb & 1.
For nonleptonic decays to two light mesons with ener-
gies Em ∼ mb/2, kinematics implies that we must also
expand in Λ/EM & 1. A formalism for systematically
expanding QCD in this fashion is the soft-collinear ef-
fective theory (SCET) [1]. In nonleptonic B-decays the
expected accuracy of these expansions are

SU(2)
mu,d

Λ
∼ 0.03 & 1 , (3)

SU(3)
mu,d

Λ
& 1,

ms

Λ
∼ 0.3 & 1 ,

SCET
Λ

EM
∼

2Λ

mb
∼ 0.2 & 1 .

The flavor symmetries SU(2) and SU(3) provide ampli-
tude relations between different nonleptonic channels,
thereby reducing the number of hadronic parameters.
The expansion in Λ/mb ∼ Λ/EM also reduces the num-
ber of hadronic parameters. In this case the expansion
yields factorization theorems for the amplitudes in terms
of moments of universal hadronic functions.

In this paper we study standard model predictions for
B → Kπ, KK̄, and ππ decays. These channels pro-
vide 25 observables, of which 19 have been measured or
bounded as summarized in Table I. We make use of the
expansions in Eq. (3), focusing on SCET. Our goal is
to quantify the extent to which the current data agrees
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B → Kπ and related decays are studied in the heavy quark limit of QCD using the soft collinear
effective theory (SCET). We focus on results that follow solely from integrating out the scale mb,
without expanding the amplitudes for the physics at smaller scales such as αs(

√

EπΛQCD). The
reduction in the number of hadronic parameters in SCET leads to multiple predictions without the
need of SU(3). We find that the CP-asymmetry in B− → π0K− should have a similar magnitude
and the same sign as the well measured asymmetry in B̄0 → π+K−. Our prediction for Br(K+π−)
exceeds the current experimental value at the 2σ level. We also use our results to determine the
corrections to the Lipkin and CP-asymmetry sum rules in the standard model and find them to be
quite small, thus sharpening their utility as a tool to look for new physics.

I. INTRODUCTION

Two body nonleptonic decays are the most widely used
processes to study CP violation in the B system. Due
to the large mass of the B-meson there is a plethora of
open channels, each of which provides unique ways for
testing the consistency of the standard model. For each
channel observables include the CP averaged branching
ratios (Br), direct CP asymmetry (ACP = −C), and for
certain neutral B decays, the time dependent CP asym-
metry (S). For the decays we are interested in

Br ≡
1

ΓB

s|!p|
8πm2

B

( |A|2 + |A|2

2

)

, λCP =
q

p

A

A
, (1)

ACP ≡
|A|2 − |A|2

|A|2 + |A|2
, S =

2 Im(λCP )

1 + |λCP |2
,

ΓB0(t) − ΓB̄0(t)

ΓB0(t) + ΓB̄0(t)
≡ −S sin(∆m t) + C cos(∆m t) ,

where A is the amplitude of the decay process A =
A(B̄ → M1M2), A is the amplitude for CP-conjugate
process, and q/p is the mixing parameter for B0 − B̄0

and/or K0−K̄0 mixing. The other parameters in Eq.(1)
are |!p|, the final meson momentum in the B rest frame,
s, a possible identical particle symmetry factor, and ∆m,
the difference between mass eigenstates in the neutral B
two-state system.

Using the unitarity of the CKM matrix to remove top-
quark CKM elements, the amplitude for any decay can
be written with the CKM elements factored out as

A = λ(f)
u Au + λ(f)

c Ac , (2)

where λ(f)
p = V ∗

pbVpf . Theoretical predictions for the
observables in (1) are often hampered by our ability to
calculate Au,c. In general the CP-asymmetries depend on
the ratio of amplitudes |Au/Ac| and their relative strong

phase δ. In fact ACP ∝ sin(δ), and so non-negligible
strong dynamics are required for the existence of a direct
CP asymmetry.

The parameters Au and Ac are in principle different
for each decay channel. In order to accurately deter-
mine Au and Ac we need model independent methods
to handle the strong dynamics in these decays. All such
methods involve systematic expansions of QCD in ratios
of quark masses and the scale Λ % ΛQCD associated with
hadronization. This includes flavor symmetries for the
light quarks, SU(2) and SU(3), from mq/Λ & 1, as well
as expansions for the heavy b-quark from Λ/mb & 1.
For nonleptonic decays to two light mesons with ener-
gies Em ∼ mb/2, kinematics implies that we must also
expand in Λ/EM & 1. A formalism for systematically
expanding QCD in this fashion is the soft-collinear ef-
fective theory (SCET) [1]. In nonleptonic B-decays the
expected accuracy of these expansions are

SU(2)
mu,d

Λ
∼ 0.03 & 1 , (3)

SU(3)
mu,d

Λ
& 1,

ms

Λ
∼ 0.3 & 1 ,

SCET
Λ

EM
∼

2Λ

mb
∼ 0.2 & 1 .

The flavor symmetries SU(2) and SU(3) provide ampli-
tude relations between different nonleptonic channels,
thereby reducing the number of hadronic parameters.
The expansion in Λ/mb ∼ Λ/EM also reduces the num-
ber of hadronic parameters. In this case the expansion
yields factorization theorems for the amplitudes in terms
of moments of universal hadronic functions.

In this paper we study standard model predictions for
B → Kπ, KK̄, and ππ decays. These channels pro-
vide 25 observables, of which 19 have been measured or
bounded as summarized in Table I. We make use of the
expansions in Eq. (3), focusing on SCET. Our goal is
to quantify the extent to which the current data agrees
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B → Kπ and related decays are studied in the heavy quark limit of QCD using the soft collinear
effective theory (SCET). We focus on results that follow solely from integrating out the scale mb,
without expanding the amplitudes for the physics at smaller scales such as αs(

√

EπΛQCD). The
reduction in the number of hadronic parameters in SCET leads to multiple predictions without the
need of SU(3). We find that the CP-asymmetry in B− → π0K− should have a similar magnitude
and the same sign as the well measured asymmetry in B̄0 → π+K−. Our prediction for Br(K+π−)
exceeds the current experimental value at the 2σ level. We also use our results to determine the
corrections to the Lipkin and CP-asymmetry sum rules in the standard model and find them to be
quite small, thus sharpening their utility as a tool to look for new physics.

I. INTRODUCTION

Two body nonleptonic decays are the most widely used
processes to study CP violation in the B system. Due
to the large mass of the B-meson there is a plethora of
open channels, each of which provides unique ways for
testing the consistency of the standard model. For each
channel observables include the CP averaged branching
ratios (Br), direct CP asymmetry (ACP = −C), and for
certain neutral B decays, the time dependent CP asym-
metry (S). For the decays we are interested in

Br ≡
1

ΓB

s|!p|
8πm2

B

( |A|2 + |A|2

2

)

, λCP =
q

p

A

A
, (1)

ACP ≡
|A|2 − |A|2

|A|2 + |A|2
, S =

2 Im(λCP )

1 + |λCP |2
,

ΓB0(t) − ΓB̄0(t)

ΓB0(t) + ΓB̄0(t)
≡ −S sin(∆m t) + C cos(∆m t) ,

where A is the amplitude of the decay process A =
A(B̄ → M1M2), A is the amplitude for CP-conjugate
process, and q/p is the mixing parameter for B0 − B̄0

and/or K0−K̄0 mixing. The other parameters in Eq.(1)
are |!p|, the final meson momentum in the B rest frame,
s, a possible identical particle symmetry factor, and ∆m,
the difference between mass eigenstates in the neutral B
two-state system.

Using the unitarity of the CKM matrix to remove top-
quark CKM elements, the amplitude for any decay can
be written with the CKM elements factored out as

A = λ(f)
u Au + λ(f)

c Ac , (2)

where λ(f)
p = V ∗

pbVpf . Theoretical predictions for the
observables in (1) are often hampered by our ability to
calculate Au,c. In general the CP-asymmetries depend on
the ratio of amplitudes |Au/Ac| and their relative strong

phase δ. In fact ACP ∝ sin(δ), and so non-negligible
strong dynamics are required for the existence of a direct
CP asymmetry.

The parameters Au and Ac are in principle different
for each decay channel. In order to accurately deter-
mine Au and Ac we need model independent methods
to handle the strong dynamics in these decays. All such
methods involve systematic expansions of QCD in ratios
of quark masses and the scale Λ % ΛQCD associated with
hadronization. This includes flavor symmetries for the
light quarks, SU(2) and SU(3), from mq/Λ & 1, as well
as expansions for the heavy b-quark from Λ/mb & 1.
For nonleptonic decays to two light mesons with ener-
gies Em ∼ mb/2, kinematics implies that we must also
expand in Λ/EM & 1. A formalism for systematically
expanding QCD in this fashion is the soft-collinear ef-
fective theory (SCET) [1]. In nonleptonic B-decays the
expected accuracy of these expansions are

SU(2)
mu,d

Λ
∼ 0.03 & 1 , (3)

SU(3)
mu,d

Λ
& 1,

ms

Λ
∼ 0.3 & 1 ,

SCET
Λ

EM
∼

2Λ

mb
∼ 0.2 & 1 .

The flavor symmetries SU(2) and SU(3) provide ampli-
tude relations between different nonleptonic channels,
thereby reducing the number of hadronic parameters.
The expansion in Λ/mb ∼ Λ/EM also reduces the num-
ber of hadronic parameters. In this case the expansion
yields factorization theorems for the amplitudes in terms
of moments of universal hadronic functions.

In this paper we study standard model predictions for
B → Kπ, KK̄, and ππ decays. These channels pro-
vide 25 observables, of which 19 have been measured or
bounded as summarized in Table I. We make use of the
expansions in Eq. (3), focusing on SCET. Our goal is
to quantify the extent to which the current data agrees



Kinematics

• Decay produces energetic light mesons

• Expand in  ΛQCD/mb ~ ΛQCD/Eπ

BD π

B ππ

Eπ =
M2

B −M2
D −M2

π

2MB
= 2.3 GeV

Eπ =
MB

2
!Mπ



Focus of lecture
• D-modes: Br(B →D M) ~ 10-4 - 10-3

• Not very sensitive to new physics
• Tree-level in weak interaction
• Good testing ground for theoretical methods

• Charmless decays: Br(B →M1 M2) ~ 10-6 - 10-4

• Sensitive to new physics
• CKM suppression
• Penguin and tree contributions

• Omit charmonium or baryonic modes and higher 
multiplicity in final states.
• Above two categories are complicated enough...



B→DM
Factorization & Soft-Collinear Effective Theory



• Effective Hamiltonian

• No penguins.
• C0 ≡ C0(μ) , C8 ≡ C8(μ). 
• C0(MW)=1+O(αs) , C8 (MW)=O(αs).

B→Dπ

partonically, the sum over all intermediate states is accurately represented by
a (qq̄) fluctuation of small transverse size of order 1/mb. Because the (qq̄) pair
is small, the physical picture of rescattering is very different from elastic ππ
scattering.

In perturbation theory, the pomeron is associated with two-gluon ex-
change. The analysis of two-loop contributions to the non-leptonic decay am-
plitude in 2 shows that the soft and collinear cancellations that guarantee the
partonic interpretation of rescattering extend to two-gluon exchange. Hence,
the soft final-state interactions are again subleading as required by the validity
of (3). As far as the hard rescattering contributions are concerned, two-gluon
exchange plus ladder graphs between a compact (qq̄) pair with energy of or-
der mb and transverse size of order 1/mb and the other pion does not lead
to large logarithms, and hence there is no possibility to construct the (hard)
pomeron. Note the difference with elastic vector-meson production through a
virtual photon, which also involves a compact (qq̄) pair. However, in this case
one considers s ! Q2, where

√
s is the photon–proton center-of-mass energy

and Q the virtuality of the photon. This implies that the (qq̄) fluctuation is
born long before it hits the proton. It is this difference of time scales, non-
existent in non-leptonic B decays, that permits pomeron exchange in elastic
vector-meson production in γ∗p collisions.

4 B → Dπ: Factorization at one-loop order

We now present a more detailed treatment of the exclusive decays B̄d →
D(∗)+L−, where L is a light meson. We illustrate explicitly how factoriza-
tion emerges at one-loop order and compute the hard-scattering kernels T I

ij(u)
in the factorization formula (3). For each final state f , we express the de-
cay amplitudes in terms of parameters a1(f) defined in analogy with similar
parameters used in the literature on naive factorization.

4.1 Effective Hamiltonian and decay topologies

The effective Hamiltonian for B → Dπ is

Heff =
GF√

2
V ∗

udVcb (C0O0 + C8O8) . (15)

We choose to write the two independent four-quark operators in the singlet–
octet basis

O0 = c̄γµ(1 − γ5)b d̄γµ(1 − γ5)u ,

O8 = c̄γµ(1 − γ5)T
Ab d̄γµ(1 − γ5)T

Au , (16)

18

partonically, the sum over all intermediate states is accurately represented by
a (qq̄) fluctuation of small transverse size of order 1/mb. Because the (qq̄) pair
is small, the physical picture of rescattering is very different from elastic ππ
scattering.

In perturbation theory, the pomeron is associated with two-gluon ex-
change. The analysis of two-loop contributions to the non-leptonic decay am-
plitude in 2 shows that the soft and collinear cancellations that guarantee the
partonic interpretation of rescattering extend to two-gluon exchange. Hence,
the soft final-state interactions are again subleading as required by the validity
of (3). As far as the hard rescattering contributions are concerned, two-gluon
exchange plus ladder graphs between a compact (qq̄) pair with energy of or-
der mb and transverse size of order 1/mb and the other pion does not lead
to large logarithms, and hence there is no possibility to construct the (hard)
pomeron. Note the difference with elastic vector-meson production through a
virtual photon, which also involves a compact (qq̄) pair. However, in this case
one considers s ! Q2, where

√
s is the photon–proton center-of-mass energy

and Q the virtuality of the photon. This implies that the (qq̄) fluctuation is
born long before it hits the proton. It is this difference of time scales, non-
existent in non-leptonic B decays, that permits pomeron exchange in elastic
vector-meson production in γ∗p collisions.

4 B → Dπ: Factorization at one-loop order

We now present a more detailed treatment of the exclusive decays B̄d →
D(∗)+L−, where L is a light meson. We illustrate explicitly how factoriza-
tion emerges at one-loop order and compute the hard-scattering kernels T I

ij(u)
in the factorization formula (3). For each final state f , we express the de-
cay amplitudes in terms of parameters a1(f) defined in analogy with similar
parameters used in the literature on naive factorization.

4.1 Effective Hamiltonian and decay topologies

The effective Hamiltonian for B → Dπ is

Heff =
GF√

2
V ∗

udVcb (C0O0 + C8O8) . (15)

We choose to write the two independent four-quark operators in the singlet–
octet basis

O0 = c̄γµ(1 − γ5)b d̄γµ(1 − γ5)u ,

O8 = c̄γµ(1 − γ5)T
Ab d̄γµ(1 − γ5)T

Au , (16)

18

b
c

d
u



Flavor topologies

• Additional gluons not suppressed, cannot 
evaluate decay in perturbation theory! 

• Topologies
• Bd →D+ π−: (T) + (E)   
• Bd →D0 π0 : (C) - (E)
• B− →D0 π−: (T) + (C)

• Will find that (T) is factorizable and (C), (E) are non-
factorizable and ΛQCD/mb suppressed.

(a) (b) (c)

Figure 6: Basic quark-level topologies for B → Dπ decays (q = u, d): (a) class-I, (b) class-
II, (c) weak annihilation. B̄d → D+π− receives contributions from (a) and (c), B̄d → D0π0

from (b) and (c), and B− → D0π− from (a) and (b). Only (a) contributes in the heavy-quark
limit.

We shall use the one-loop analysis for B̄d → D+π− as a concrete example
to illustrate explicitly the various steps involved in establishing the factoriza-
tion formula. Most of the arguments given below are standard from the theory
of hard exclusive processes involving light hadrons 8. However, it is instructive
to repeat these arguments in the context of B decays.

4.2 Soft and collinear cancellations at one-loop order

In order to demonstrate the property of factorization for the decay B̄d →
D+π−, we now analyze the “non-factorizable” one-gluon exchange contribu-
tions shown in Fig. 5 in some detail. We consider the leading, valence Fock
state of the emitted pion. This is justified since higher Fock components only
give power-suppressed contributions to the decay amplitude in the heavy-quark
limit (as demonstrated later). For the purpose of our discussion, the valence
Fock state of the pion can be written as

|π(q)〉 =

∫

du√
uū

d2l⊥
16π3

1√
2Nc

(

a†
↑(lq) b†↓(lq̄) − a†

↓(lq) b†↑(lq̄)
)

|0〉Ψ(u,"l⊥) , (20)

where a†
s (b†s) denotes the creation operator for a quark (antiquark) in a state

with spin s =↑ or s =↓, and we have suppressed colour indices. The wave
function Ψ(u,"l⊥) is defined as the amplitude for the pion to be composed of
two on-shell quarks, characterized by longitudinal momentum fraction u and
transverse momentum l⊥. The on-shell momenta of the quark and antiquark
are chosen as in (8). For the purpose of power counting, l⊥ ∼ ΛQCD ( E ∼ mb.

Note that the invariant mass of the valence state is (lq + lq̄)2 = "l 2
⊥/(uū), which

is of order Λ2
QCD and hence negligible in the heavy-quark limit unless u is

in the vicinity of the endpoints u = 0 or 1. In this case, the invariant mass
of the quark–antiquark pair becomes large, and the valence Fock state is no

20

(T)
tree

(C)
color suppressed tree

(E)
weak annihilation



Isospin analysis
• D π can be isospin 1/2 or 3/2.

• Three observables: 

suppressed channels. Conclusions are given in VII. In Appendix A we prove that for π0

and ρ0 the long distance contributions are suppressed. Finally in Appendices B and C we
elaborate on the properties of the jet functions and our new soft B → D(∗) distribution
functions respectively.

II. DATA

We start by reviewing existing data on the B̄ → D(∗)π decays. The branching ratios for
most of these modes have been measured and the existing results are collected in Table I.
Taking into account that the D(∗)π final state can have isospin I = 1/2, 3/2, these decays
can be parameterized by 2 isospin amplitudes A1/2, A3/2:

A+− = A(B̄0 → D+π−) =
1√
3
A3/2 +

√

2

3
A1/2 = T + E ,

A 0− = A(B− → D0 π−) =
√

3A3/2 = T + C ,

A 00 = A(B̄0 → D0 π0 ) =

√

2

3
A3/2 −

1√
3
A1/2 =

1√
2
(C − E) . (9)

Similar expressions can be written for the decay amplitudes of B → D∗π, B → Dρ, B → D∗ρ
with well defined helicity of the final state vector mesons. Eq. (9) also gives the alternative
parameterization of these amplitudes in terms of the amplitudes T, C, E discussed in Sec. I.

Using the data in Table I, the individual isospin amplitudes AI and their relative phase
δ = arg(A1/2A∗

3/2) can be extracted using

Br(B̄ → D(∗)M) = τBΓ(B̄ → D(∗)M) =
τB|p|
8πm2

B

∑

pol

∣

∣A(B̄ → D(∗)M)
∣

∣

2
. (10)

with τB̄0 = 2.343 × 1012 GeV−1 and τB− = 2.543 × 1012 GeV−1. We find

|AD
1/2| = (4.33 ± 0.47) × 10−7 GeV , δDπ = 30.5◦+7.8

−13.8 , (11)

|AD
3/2| = (4.45 ± 0.17) × 10−7 GeV ,

|AD∗

1/2| = (4.60 ± 0.36) × 10−7 GeV , δD∗π = 30.2 ± 6.6◦ ,

|AD∗

3/2| = (4.33 ± 0.19) × 10−7 GeV .

The ranges for δ correspond to 1σ uncertainties for the experimental branching ratios. A
graphical representation of these results is given in Fig. 5, where we show contour plots
for the ratios of isospin amplitudes RI = A1/2/(

√
2A3/2) for both Dπ and D∗π final states.

For B̄ → Dπ an isospin analysis was performed recently by CLEO [18] including error
correlations among the decay modes; we used their analysis in quoting errors on δDπ.

For later convenience we define the amplitude ratios

RM
0 ≡

A(B̄0 → D∗0M0)

A(B̄0 → D0M0)
, RM/M ′

0 ≡
A(B̄0 → D(∗)0M0)

A(B̄0 → D(∗)0M ′ 0)
, (12)

RI ≡
A1/2√
2A3/2

= 1 −
3

2

C − E

T + C
, Rc ≡

A(B̄0 → D(∗)+M−)

A(B− → D(∗)0M−)
= 1 −

C − E

T + C
,

6

|A3/2| , |A1/2| , δ = arg(A1/2A
∗
3/2)



Naive factorization for Bd →D+ π−

• Replace

• This is a model! Not even consistent (result for 
decay rate becomes scale dependent), but works 
numerically well. 

(a) (b) (c)

Figure 6: Basic quark-level topologies for B → Dπ decays (q = u, d): (a) class-I, (b) class-
II, (c) weak annihilation. B̄d → D+π− receives contributions from (a) and (c), B̄d → D0π0

from (b) and (c), and B− → D0π− from (a) and (b). Only (a) contributes in the heavy-quark
limit.

We shall use the one-loop analysis for B̄d → D+π− as a concrete example
to illustrate explicitly the various steps involved in establishing the factoriza-
tion formula. Most of the arguments given below are standard from the theory
of hard exclusive processes involving light hadrons 8. However, it is instructive
to repeat these arguments in the context of B decays.

4.2 Soft and collinear cancellations at one-loop order

In order to demonstrate the property of factorization for the decay B̄d →
D+π−, we now analyze the “non-factorizable” one-gluon exchange contribu-
tions shown in Fig. 5 in some detail. We consider the leading, valence Fock
state of the emitted pion. This is justified since higher Fock components only
give power-suppressed contributions to the decay amplitude in the heavy-quark
limit (as demonstrated later). For the purpose of our discussion, the valence
Fock state of the pion can be written as

|π(q)〉 =

∫

du√
uū

d2l⊥
16π3

1√
2Nc

(

a†
↑(lq) b†↓(lq̄) − a†

↓(lq) b†↑(lq̄)
)

|0〉Ψ(u,"l⊥) , (20)

where a†
s (b†s) denotes the creation operator for a quark (antiquark) in a state

with spin s =↑ or s =↓, and we have suppressed colour indices. The wave
function Ψ(u,"l⊥) is defined as the amplitude for the pion to be composed of
two on-shell quarks, characterized by longitudinal momentum fraction u and
transverse momentum l⊥. The on-shell momenta of the quark and antiquark
are chosen as in (8). For the purpose of power counting, l⊥ ∼ ΛQCD ( E ∼ mb.

Note that the invariant mass of the valence state is (lq + lq̄)2 = "l 2
⊥/(uū), which

is of order Λ2
QCD and hence negligible in the heavy-quark limit unless u is

in the vicinity of the endpoints u = 0 or 1. In this case, the invariant mass
of the quark–antiquark pair becomes large, and the valence Fock state is no
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x

〈D+π−| (c̄b)V−A (d̄u)V−A |B〉

−→ 〈π−| (d̄u)V−A |0〉 〈D+| (c̄b)V−A|B〉
fπ FB→D(M2

π)



(QCD) factorization for Bd →D+ π− 

• Cannot leave out interactions with outgoing π. 
• In the limit mb→∞, mc/mb fixed 

• pion becomes energetic 
• Eπ =(mB2-mD2)/2mB→∞

• the interactions are suppressed by αs(mb)
• evaluate in perturbation theory
• lowest order: naive factorization

• Bjorken: “color transparency”

(a) (b) (c) (d)

Figure 5: “Non-factorizable” vertex corrections.

pion distribution amplitude. However, as the leading-order diagram in Fig. 3
involves only the normalization integral of the pion distribution amplitude, the
sum of the fourth diagram in Fig. 4 and the wave-function renormalization of
the quarks in the emitted pion vanishes. In other words, these diagrams would
renormalize the (ūd) light-quark current, which however is conserved.

“Non-factorizable” vertex corrections

We now begin the analysis of “non-factorizable” diagrams, i.e. diagrams con-
taining gluon exchanges that cannot be associated with the B → D form factor
or the pion decay constant. At order αs, these diagrams can be divided into
three groups: vertex corrections, hard spectator interactions, and annihilation
diagrams.

The vertex corrections shown in Fig. 5 violate the naive factorization
ansatz (2). One of the key observations made in 1,2 is that these diagrams
are calculable nonetheless. Let us summarize the argument here, postpon-
ing the explicit evaluation of these diagrams to Sect. 4. The statement is
that the vertex-correction diagrams form an order-αs contribution to the hard-
scattering kernels T I

ij(u). To demonstrate this, we have to show that: i) The
transverse momentum of the quarks that form the pion can be neglected at
leading power, i.e. the two momenta in (8) can be approximated by uq and
ūq, respectively. This guarantees that only a convolution in the longitudinal
momentum fraction u appears in the factorization formula. ii) The contribu-
tion from the soft-gluon region and gluons collinear to the direction of the pion
is power suppressed. In practice, this means that the sum of these diagrams
cannot contain any infrared divergences at leading power in ΛQCD/mb.

Neither of the two conditions holds true for any of the four diagrams
individually, as each of them separately contains collinear and infrared di-
vergences. As will be shown in detail later, the infrared divergences cancel
when one sums over the gluon attachments to the two quarks comprising the
emission pion ((a+b), (c+d) in Fig. 5). This cancellation is a technical mani-

15



Factorization theorem

• T0(x,µ) and T8(x,µ) are hard scattering 
kernels
• calculable in perturbation theory

• φπ (x,µ) is the “leading twist light-cone 
distribution amplitude” of the pion.
• non-perturbative

〈D+π−|O0,8 |B̄〉 =
iMBEπfπ

2
FB→D(0)

∫ 1

0
T0,8(x, µ)φπ(x, µ) + O(

ΛQCD

mb
)

Proposed by Politzer and Wise ‘91, checked to 2 loops by Beneke et al. ‘00,
all order analysis using SCET  Bauer et al. ‘01 

T0(x, µ) = 1 +O(α2
s) T8(x, µ) =

αs

4π

N2
c − 1
4N2

c

[
−6 ln

µ2

m2
b

+ f(x,mc/mb)
]

+O(α2
s)



Hard scattering kernel T(x,μ)
• Lowest order in αs:

• Have expanded momenta. Can neglect pion 
mass and perpendicular momentum of quarks.

• First order in αs:

mbvµ mcv
′
µ

x pπ (1− x) pπ

(a) (b) (c) (d)

Figure 5: “Non-factorizable” vertex corrections.
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Figure 3: Leading-order contribution to the hard-scattering kernels T I
ij(u). The weak decay

of the b quark through a four-fermion operator is represented by the black square.

functions. To see this, we represent the form factor by an overlap integral of
wave functions (not integrated over transverse momentum),

FB→D
+,0 (0) ∼

∫

dξd2k⊥
16π3

ΨB(ξ, k⊥)ΨD(ξ′(ξ), k⊥) , (11)

where ξ′(ξ) is fixed by kinematics, and we have set q2 = 0 for simplicity. The
probability of finding the B meson in its valence Fock state is of order 1 in the
heavy-quark limit, i.e.

∫

dξd2k⊥
16π3

|ΨB,D(ξ, k⊥)|2 ∼ 1 . (12)

Counting k⊥ ∼ ΛQCD and dξ ∼ ΛQCD/mb, we deduce that ΨB(ξ, k⊥) ∼
m1/2

b /Λ3/2
QCD. From (11), we then obtain the scaling law FB→D

+,0 (0) ∼ 1, in
agreement with the prediction of heavy-quark symmetry.

The representation (11) of the form factor as an overlap of wave functions
for the two-particle Fock state of the heavy meson is not rigorous, because
there is no reason to assume that the contribution from higher Fock states
with additional soft gluons is suppressed. The consistency with the estimate
based on heavy-quark symmetry shows that these additional contributions are
not larger than the two-particle contribution.

3.3 Non-leptonic decay amplitudes

We now turn to a qualitative discussion of the lowest-order and one-gluon
exchange diagrams that could contribute to the hard-scattering kernels T I

ij(u)
in (3). In the figures which follow, the two lines directed upwards represent
π−, the lines on the left represent B̄d, and the lines on the right represent D+.

Lowest-order diagram

There is a single diagram with no hard gluon interactions shown in Fig. 3. Ac-
cording to (10) the spectator quark is soft, and since it does not undergo a hard

13

pb = mbv +O(ΛQCD)
pc = mcv

′ +O(ΛQCD)
pd = x pπ +O(ΛQCD)
pu = (1− x)pπ +O(ΛQCD)



Light-cone distribution amplitude

• Amplitude for an up anti-quark with 
momentum fraction x and a down quark with 
fraction (1-x) to hadronize into a pion.

• Normalized to 1: 

• Asymptotic DA:
• Often used for simplicity, but might not be 

adequate at μ ~ mb.

arbitrary Dirac matrix

∫ 1

0
dx φπ(x, µ) = 1

φπ(x, µ) = 6x(1− x) for µ→∞

〈π−(pπ)|d̄(y)Γu(0)|0〉
∣∣
y2=0 =

ifπ

4
Tr

[
Γp/πγ5

] ∫ 1

0
dx eixy·pπφπ(x, µ)



Questions:
• Is the hard scattering kernel insensitive to low 

energy QCD effects?
• Individual diagrams need IR cut-off (e.g. 

gluon mass), but sum is well defined to 2-
loop accuracy.

• Is the integral over x convergent?
• OK at 1-loop order.

• Contribution from higher fock states?
• Tree-level contributions suppressed as Λ/mb

• Contribution from other two flavor 
topologies, such as weak annihilation?
• Tree-level contributions suppressed as Λ/mb

Figure 9: Diagram that contributes to the hard-scattering kernel involving a quark–
antiquark–gluon distribution amplitude of the B meson and the emitted light meson.

Additional hard partons

An example of a diagram that would contribute to a hard-scattering function
involving quark–antiquark–gluon components of the emitted meson and the
B meson is shown in Fig. 9. For light mesons, higher Fock components are
related to higher-order terms in the collinear expansion, including the effects
of intrinsic transverse momentum and off-shellness of the partons by gauge
invariance. The assumption is that the additional partons are collinear and
carry a finite fraction of the meson momentum in the heavy-quark limit. Under
this assumption, it is easy to see that adding additional partons to the Fock
state increases the number of off-shell propagators in a given diagram (compare
Fig. 9 to Fig. 3). This implies power suppression in the heavy-quark expansion.
Additional partons in the B-meson wave function are always soft, as is the
spectator quark. Nevertheless, when these partons are connected to the hard-
scattering amplitudes the virtuality of the additional propagators is still of
order mbΛQCD, which is sufficient to guarantee power suppression.

Figure 10: The contribution of the qq̄g Fock state to the B̄d → D+π− decay amplitude.

Let us study in more detail how the power suppression arises for the sim-
plest non-trivial example, where the pion is composed of a quark, an antiquark,
and an additional gluon. The contribution of this 3-particle Fock state to the
B → Dπ decay amplitude is shown in Fig. 10. It is convenient to use the
Fock–Schwinger gauge, which allows us to express the gluon field Aλ in terms
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higher fock state

(a) (b) (c) (d)

Figure 8: Annihilation diagrams.

5.2 Annihilation topologies

Our next concern are the annihilation diagrams shown in Fig. 8, which also
contribute to the decay B̄d → D+π−. The hard part of these diagrams could,
in principle, be absorbed into hard-scattering kernels of the type T II

i . The soft
part, if unsuppressed, would violate factorization. However, we will see that
the hard part as well as the soft part are suppressed by at least one power of
ΛQCD/mb.

The argument goes as follows. We write the annihilation amplitude as

A(B̄d → D+π−)ann ∼ GF fπfDfB αs

×
∫ 1

0
dξ dη du ΦB(ξ)ΦD(η)Φπ(u)T ann(ξ, η, u) , (47)

where the dimensionless function T ann(ξ, η, u) is a product of propagators and
vertices. The product of decay constants scales as Λ4

QCD/mb. Since dξ ΦB(ξ)
scales as 1 and so does dη ΦD(η), while du Φπ(u) is never larger than 1, the
amplitude can only compete with the leading-order result (13) if T ann(ξ, η, u)
can be made of order (mb/ΛQCD)3 or larger. Since T ann(ξ, η, u) contains only
two propagators, this can be achieved only if both quarks the gluon splits into
are soft, in which case T ann(ξ, η, u) ∼ (mb/ΛQCD)4. But then du Φπ(u) ∼
(ΛQCD/mb)2, so that this contribution is power suppressed.

5.3 Non-leading Fock states

Our discussion so far concentrated on contributions related to the quark–
antiquark components of the meson wave functions. We now present quali-
tative arguments that justify this restriction to the valence-quark Fock com-
ponents. Some of these arguments are standard 8,9. We will argue that higher
Fock states yield only subleading contributions in the heavy-quark limit.
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annihilation

Figure 7: “Non-factorizable” spectator interactions.

5.1 Interactions with the spectator quark

Clearly, the diagrams shown in Fig. 7 cannot be associated with the form-
factor term in the factorization formula (3). We will now show that for B
decays into a heavy-light final state their contribution is power suppressed in
the heavy-quark limit. (This suppression does not occur for decays into two
light mesons, where hard spectator interactions contribute at leading power.
In this case, they contribute to the kernels T II

i in the factorization formula
(second term in Fig. 1).)

In general, “non-factorizable” diagrams involving an interaction with the
spectator quark would impede factorization if there existed a soft contribution
at leading power. While such terms are present in each of the two diagrams
separately, they cancel in the sum over the two gluon attachments to the (ūd)
pair by virtue of the same colour-transparency argument that was applied to
the “non-factorizable” vertex corrections.

Focusing again on decays into a heavy and a light meson, such as B̄d →
D+π−, we still need to show that the contribution remaining after the soft
cancellation is power suppressed relative to the leading-order contribution (13).
A straightforward calculation leads to the following (simplified) result for the
sum of the two diagrams:

A(B̄d → D+π−)spec ∼ GF fπfDfB αs

×
∫ 1

0

dξ

ξ
ΦB(ξ)

∫ 1

0

dη

η
ΦD(η)

∫ 1

0

du

u
Φπ(u)

∼ GF αs mb Λ2
QCD . (46)

This is indeed power suppressed relative to (13). Note that the gluon virtuality
is of order ξη m2

b ∼ Λ2
QCD and so, strictly speaking, the calculation in terms

of light-cone distribution amplitudes cannot be justified. Nevertheless, we use
(46) to deduce the scaling behaviour of the soft contribution, as we did for the
heavy-light form factor in Sect. 3.2.
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spectator interaction

Some Λ/mb  power 
suppressed effects: 

Beneke et al. ‘00. (112pp!)



Soft-collinear effective theory
• Provides a systematic framework to perform 

expansion in                                       for processes 
with light energetic hadrons in final state.
• All order (in αs) answers to the questions on 

the previous page.
• Splits QCD quark and gluon fields into

• “Soft fields”: HQET Lagrangian for the partons 
inside the B- and D-meson.

• “Collinear fields”: partons inside energetic 
light mesons.

• “Messenger fields”: low-energy interaction 
between light mesons and B- and D-mesons.

ΛQCD/Eπ ∼ ΛQCD/mb

Bauer, Pirjol, Stewart, ...



Factorization in SCET

• At leading power messenger fields decouple → 
factorization

• Hard scattering kernel T becomes Wilson coefficient 
of SCET operator.

• Matrix element of soft fields: B →D form factor. 
• Matrix element of collinear fields: π light-cone dist. amp.

Factorization 

B D

!

〈Dπ|(c̄b)(ūd)|B〉 = N ξ(v · v′)
∫ 1

0
dxT (x, µ) φπ(x, µ)

Calculate T  

B̄0 → D+π− , B− → D0π−

Q2 Λ2!!
+AD(∗)π

long

AD(∗)π
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

•

• B̄0 → D(∗)0π0 (power suppressed)

b

d

c

u

d

d

(a)

b
c

u

u

ud

(b)

Mantry, Pirjol, I.S.

EπΛ

color supp. ~ exchange

Soft fields

B→D form factor 

Collinear fields
Pion LCDA



(Cleo, Belle, Babar)Data
Decay Br(10−3) |A| (10−7 GeV) Decay Br(10−3) |A| (10−7 GeV)

B̄0 → D+π− 2.76 ± 0.25 5.99 ± 0.27 B̄0 → D∗+π− 2.76 ± 0.21 6.06 ± 0.23
B− → D0π− 4.98 ± 0.29 7.72 ± 0.22 B− → D∗0π− 4.6 ± 0.4 7.50 ± 0.33
B̄0 → D0π0 0.25 ± 0.02 1.81 ± 0.08 B̄0 → D∗0π0 0.28 ± 0.05 1.95 ± 0.18
B̄0 → D+ρ− 7.7 ± 1.3 10.2 ± 0.9 B̄0 → D∗+ρ− 6.8 ± 0.9 9.10 ± 0.61
B− → D0ρ− 13.4 ± 1.8 12.9 ± 0.9 B− → D∗0ρ− 9.8 ± 1.7 10.5 ± 0.92
B̄0 → D0ρ0 0.29 ± 0.11 1.97 ± 0.37 B̄0 → D∗0ρ0 < 0.51 < 2.78

• size of Br(D+M−) agrees with factorization

• Br(D0M0) small as expected (power suppressed)
• color allowed Br are same for D and D∗

• |A(B− → D0ρ−)|
|A(B− → D0π−)| = 1.67 ± 0.12 " fρ

fπ

|Vud||A(B− → D0K−)|
|Vus||A(B− → D0π−)| = 1.20 ± 0.10 " fK

fπ
,

Confrontation with data

• Size of Br(Bd →D+ M−) agrees with factorization prediction.
• Power suppressed Br(Bd →D0 M0) indeed small. (Additional 

color suppression.)
• Br(B →D π) ≈ Br(Bd →D* π) holds.  Even for power 

suppressed Bd →D0 M0 (Mantry, Pirjol and Stewart ‘03). 

from a talk by I. Stewart, May ‘05. See http://hfag.phys.ntu.edu.tw/b2charm/ for up to date results.
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B̄0 → D+ρ− 7.7 ± 1.3 10.2 ± 0.9 B̄0 → D∗+ρ− 6.8 ± 0.9 9.10 ± 0.61
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(Cleo, Belle, Babar)Data
Decay Br(10−3) |A| (10−7 GeV) Decay Br(10−3) |A| (10−7 GeV)

B̄0 → D+π− 2.76 ± 0.25 5.99 ± 0.27 B̄0 → D∗+π− 2.76 ± 0.21 6.06 ± 0.23
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B̄0 → D+ρ− 7.7 ± 1.3 10.2 ± 0.9 B̄0 → D∗+ρ− 6.8 ± 0.9 9.10 ± 0.61
B− → D0ρ− 13.4 ± 1.8 12.9 ± 0.9 B− → D∗0ρ− 9.8 ± 1.7 10.5 ± 0.92
B̄0 → D0ρ0 0.29 ± 0.11 1.97 ± 0.37 B̄0 → D∗0ρ0 < 0.51 < 2.78

• size of Br(D+M−) agrees with factorization

• Br(D0M0) small as expected (power suppressed)
• color allowed Br are same for D and D∗

• |A(B− → D0ρ−)|
|A(B− → D0π−)| = 1.67 ± 0.12 " fρ

fπ

|Vud||A(B− → D0K−)|
|Vus||A(B− → D0π−)| = 1.20 ± 0.10 " fK

fπ
,

Confrontation with Data

• Significant difference between Br(Bd →D+ M−) and       
Br(B− →D0 M−) which are equal in heavy quark limit.

• 20-30% in amplitude  →  40-60% in BR!
• Sizable phase

• Suppressed by ΛQCD/mb

from a talk by I. Stewart, May ‘05. See http://hfag.phys.ntu.edu.tw/b2charm/ for up to date numerical results.

0.37±0.10 2.2±1.0

(Cleo, Belle, Babar)Data
Decay Br(10−3) |A| (10−7 GeV) Decay Br(10−3) |A| (10−7 GeV)

B̄0 → D+π− 2.76 ± 0.25 5.99 ± 0.27 B̄0 → D∗+π− 2.76 ± 0.21 6.06 ± 0.23
B− → D0π− 4.98 ± 0.29 7.72 ± 0.22 B− → D∗0π− 4.6 ± 0.4 7.50 ± 0.33
B̄0 → D0π0 0.25 ± 0.02 1.81 ± 0.08 B̄0 → D∗0π0 0.28 ± 0.05 1.95 ± 0.18
B̄0 → D+ρ− 7.7 ± 1.3 10.2 ± 0.9 B̄0 → D∗+ρ− 6.8 ± 0.9 9.10 ± 0.61
B− → D0ρ− 13.4 ± 1.8 12.9 ± 0.9 B− → D∗0ρ− 9.8 ± 1.7 10.5 ± 0.92
B̄0 → D0ρ0 0.29 ± 0.11 1.97 ± 0.37 B̄0 → D∗0ρ0 < 0.51 < 2.78

20-30% level
|A0−|
|A+−|

=
{

0.77 ± 0.05 for Dπ
0.81 ± 0.05 for D∗π

• but significant power corrections for Br( D0M−)/Br(D+M−)

• significant strong phases δ ∼ 30◦

δ = arg(A1/2A
∗
3/2) ∼ 30◦



b-baryons

• CDF ‘05 has measured  
• Same factorization theorem holds for b-

baryons. Identical hard-scattering 
kernel, but need 

Not yet tested:

• Baryons
topologies:
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Br(Λb → Ξ∗
cK)

Br(Λb → Ξ′
cK)

= 2 ,
Br(Λb → Ξ∗

cK
∗
‖ )

Br(Λb → Ξ′
cK

∗
‖ )

= 2
Br(Λb → Σ∗

cπ)
Br(Λb → Σcπ)

= 2 ,
Br(Λb → Σ∗

cρ)
Br(Λb → Σcρ)

= 2

• Excited D’s Mantry

Belle:

Br(B → D∗
2π)

Br(B → D1π)
= 1 φD∗

2π = φD1π

Br(B− → D∗0
2 π−)

Br(B− → D0
1π

−)
= 0.77± 0.15

Γ(Λb → Λcπ−)
Γ(B̄0 → D+π−)

=
8m3

Λb
(1− r2

Λ)3 rD

m3
B(1− r2

D)3(1 + rD)2

(
ζ(wΛ

max)
ξ(wD

max)

)2

1.6
need

semileptonic

Babar:
Br(B− → D∗0

2 π−)
Br(B− → D0

1π
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= 0.80± 0.17
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Tree Color-commensurate Exchange Bow tie

FIG. 1: Diagrams for Λb decays, giving amplitudes T , C, E, and B. Decay to Λc gets contributions

from all four terms. Decays to Σ(∗)
c and Ξc do not have T and T,C contributions, respectively.

where both the Wilson coefficients, Ci, and the four-quark operators

O1 = (c̄ γµPLb) (d̄γµPLu) , O2 = (d̄ γµPLb) (c̄γµPLu) , (3)

depend on the renormalization scale which we take to be mb, and PL = (1 − γ5)/2. The

combination [C1(mb) + C2(mb)/3] |Vud| is very close to unity.

Weak nonleptonic decays are sometimes characterized by diagrams corresponding to

different Wick contractions. As shown in Fig. 1, there are more possibilities in baryon

than in meson decays. In particular, a “Bow tie” contraction is unique to baryons. The

color structure for baryons also differs from mesons: we find that the C diagram is of

the same order in the large Nc limit as the T diagram.1 Nonleptonic meson decay ampli-

tudes are sometimes estimated using naive factorization, which would set 〈Λcπ|O1|Λb〉 =

〈Λc|c̄γµPLb|Λb〉 〈π|d̄γµPLu|0〉. In baryon decays the extra light quark implies that this pro-

cedure is ill-defined for all but the tree diagram. In naive factorization the Λb → Σ(∗)
c π

decays are very suppressed, since the T contribution vanishes separately in the isospin and

heavy quark limits [7] (just like the semileptonic Λb → Σ(∗)
c #ν̄ decays), the C contribution

vanishes after doing a Fiertz transformation on the four-quark operator, and the E and B

amplitudes are identically zero since the u and b fields are in different quark bilinears.

In this letter we show that more rigorous techniques can still be applied to make rea-

sonable predictions for all these decays. By expanding in mb, mc, Eπ % ΛQCD we show

that for Λb → Λ+
c π− the amplitudes corresponding to the diagrams in Fig. 1 satisfy

T % C ∼ E % B, and we find that the experimental result in Eq. (1) is consistent with

1 If we treated the Nc − 3 additional quarks in the baryons as flavors that are sterile under the weak

interaction then color-commensurate would become color-suppressed.
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theoretical expectations. Next we consider Λb → Σ(∗)
c π decays, and show the leading con-

tributions to these nonleptonic rates are suppressed by Λ2
QCD/E2

π, much like in B0 → D0π0.

Using heavy quark symmetry we derive a relation between the decay rate to Σc and Σ∗
c and

comment on decays to Ξc. Finally we consider the detection of possible weakly decaying

heavy pentaquarks, Θb and Θc, with nonleptonic decays.

The proof of factorization at leading order for Λb → Λcπ decay follows closely that for

B0 → D(∗)+π− [8], so we do not review it here. In this case the nonperturbative expansion

parameter for SCET is λ = ΛQCD/Eπ [9]. Since Eπ is set by the bottom and charm quark

masses, we take this to be of the same order as the expansion parameter for the heavy quark

effective theory (HQET), i.e., λ ∼ ΛQCD/mQ (Q = c, b). Working at leading order in λ

and αs(mb) and neglecting the pion mass, the Λb → Λcπ matrix element factorizes in the

standard way,

〈Λc(v
′, s′) π|HW |Λb(v, s)〉 =

√
2 GF

(

C1 +
C2

3

)

VcbV
∗
ud fπEπ 〈Λc(v

′, s′)| c̄ n/PLb |Λb(v, s)〉 , (4)

where fπ = 131 MeV is the pion decay constant, n is a light-like four-vector along the

direction of the pion’s four-momentum, pµ
π = Eπnµ, and the four-velocities of the Λb and Λc

are v and v′, respectively. Perturbative corrections induce a multiplicative factor in Eq. (4),

〈T (x)〉π =
∫ 1
0 dxT (x) φπ(x), where T (x) is computable and φπ is the nonperturbative light-

cone pion distribution function [10, 11], and a term proportional to the matrix element of

c̄ n/PRb. At leading order in αs(mQ), we can set 〈T (x)〉π = 1 and the term involving c̄ n/PRb

to 0. This implies that the nonleptonic rate is related to the semileptonic differential decay

rate at maximal recoil,

Γ(Λb → Λcπ) =
3π2(C1 + C2/3)2 |Vud|2f 2

π

m2
Λb

rΛ

(

dΓ(Λb → Λc%ν̄)

dw

)

wmax

, (5)

where rΛ = mΛc
/mΛb

, w = v · v′ = (m2
Λb

+ m2
Λc

− q2)/(2mΛb
mΛc

), and wmax corresponds to

q2 = m2
π(' 0).

The semileptonic Λb → Λc%ν̄ form factors are

〈Λc(p
′, s′)|Vµ|Λb(p, s)〉 = ū(p′, s′)

[

f1γµ + f2vµ + f3v
′
µ

]

u(p, s) ,

〈Λc(p
′, s′)|Aµ|Λb(p, s)〉 = ū(p′, s′)

[

g1γµ + g2vµ + g3v
′
µ

]

γ5 u(p, s) , (6)

where the fi and gi are functions of w, and the relevant currents are Vν = c̄γνb and Aν =

c̄γνγ5b. The spinors are normalized to ū(p, s)γµu(p, s) = 2pµ. In the heavy quark limit,

ζ(w) = f1(w) = g1(w) ,
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are v and v′, respectively. Perturbative corrections induce a multiplicative factor in Eq. (4),

〈T (x)〉π =
∫ 1
0 dxT (x) φπ(x), where T (x) is computable and φπ is the nonperturbative light-

cone pion distribution function [10, 11], and a term proportional to the matrix element of

c̄ n/PRb. At leading order in αs(mQ), we can set 〈T (x)〉π = 1 and the term involving c̄ n/PRb

to 0. This implies that the nonleptonic rate is related to the semileptonic differential decay

rate at maximal recoil,

Γ(Λb → Λcπ) =
3π2(C1 + C2/3)2 |Vud|2f 2

π

m2
Λb

rΛ

(

dΓ(Λb → Λc%ν̄)

dw

)

wmax

, (5)

where rΛ = mΛc
/mΛb

, w = v · v′ = (m2
Λb

+ m2
Λc

− q2)/(2mΛb
mΛc

), and wmax corresponds to

q2 = m2
π(' 0).

The semileptonic Λb → Λc%ν̄ form factors are

〈Λc(p
′, s′)|Vµ|Λb(p, s)〉 = ū(p′, s′)

[

f1γµ + f2vµ + f3v
′
µ

]

u(p, s) ,

〈Λc(p
′, s′)|Aµ|Λb(p, s)〉 = ū(p′, s′)

[

g1γµ + g2vµ + g3v
′
µ

]

γ5 u(p, s) , (6)

where the fi and gi are functions of w, and the relevant currents are Vν = c̄γνb and Aν =

c̄γνγ5b. The spinors are normalized to ū(p, s)γµu(p, s) = 2pµ. In the heavy quark limit,

ζ(w) = f1(w) = g1(w) ,

4

FΛb→Λc(M
2
π ≈ 0)
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We present the first measurement of the ratio of branching fractions B(Λb → Λ+
c µ−νµ)/B(Λb →

Λ+
c π−) in p̄p collisions at

√
s = 1.96 TeV with the CDF-II detector at the Fermilab Tevatron. We

also present measurements of B(B
0 → D+µ−νµ)/B(B

0 → D+π−) and B(B
0 → D∗+µ−νµ)/B(B

0 →
D∗+π−), which serve as the control samples to cross-check our analysis methods. We find the relative
branching fractions to be:

B(B
0 → D+µ−νµ)

B(B
0 → D+π−)

= 9.8 ± 1.0 (stat) ± 0.6 (syst) ± 0.8 (BR) ± 0.9 (UBR),

B(B
0 → D∗+µ−νµ)

B(B
0 → D∗+π−)

= 17.7 ± 2.3 (stat)± 0.6 (syst)± 0.4 (BR) ± 1.1 (UBR),

B(Λb → Λ+
c µ−νµ)

B(Λb → Λ+
c π−)

= 20.0 ± 3.0 (stat)± 1.2 (syst)
+0.7
−2.1

(BR) ± 0.5 (UBR).

The uncertainties are from statistics, CDF internal systematics, external measured branching frac-
tions and unmeasured branching fractions, respectively. The control sample results are consistent
with the ratios obtained by the Particle Data Group at the 1.1 and 0.7 σ level, respectively. Using
previous CDF measurements and our relative Λb branching fraction, we obtain the hadronic and
the exclusive semileptonic branching fractions:

B(Λb → Λ+
c π−) =

„
0.41 ± 0.19 (stat⊕ syst)

+0.06
−0.08

(PT spectrum)

«
%,

B(Λb → Λ+
c µ−νµ) =

„
8.1 ± 1.2 (stat)

+1.1
−1.6

(syst) ± 4.3 (B(Λb → Λ+
c π−))

«
%.

The last uncertainty of the hadronic branching fraction is due to the measured Λb PT spectrum.

Preliminary Results for Summer 2005 Conferences



B→M1 M2



• Rare: BR ~ 10-6 - 10-4, about 100 times 
smaller than in Bd →D+ M−. |Vub/Vcb|~ 0.1.

• Sensitive to new physics: penguin as well 
as tree-level contributions.
• e.g. for B→ππ

B→M1 M2

b u

d

ū ū

d

u u

ū

db b

QCD penguin EW penguin
W W

Z

W-exchange

W

FCNC FCNC



Weak Hamiltonian

• Hierarchy of Wilson coefficients

all other B decays into two light, flavour-nonsinglet pseudoscalar mesons. Using the
unitarity relation −λt = λu + λc, we write

Heff =
GF√

2

∑

p=u,c

λp

(

C1 Qp
1 + C2 Qp

2 +
∑

i=3,...,10

Ci Qi + C7γ Q7γ + C8g Q8g

)

+ h.c. , (1)

where Qp
1,2 are the left-handed current–current operators arising from W -boson exchange,

Q3,...,6 and Q7,...,10 are QCD and electroweak penguin operators, and Q7γ and Q8g are the
electromagnetic and chromomagnetic dipole operators. They are given by

Qp
1 = (p̄b)V −A(s̄p)V −A , Qp

2 = (p̄ibj)V −A(s̄jpi)V −A ,

Q3 = (s̄b)V −A

∑

q (q̄q)V −A , Q4 = (s̄ibj)V −A

∑

q (q̄jqi)V −A ,

Q5 = (s̄b)V −A

∑

q (q̄q)V +A , Q6 = (s̄ibj)V −A

∑

q (q̄jqi)V +A ,

Q7 = (s̄b)V −A

∑

q
3
2eq(q̄q)V +A , Q8 = (s̄ibj)V −A

∑

q
3
2eq(q̄jqi)V +A ,

Q9 = (s̄b)V −A

∑

q
3
2eq(q̄q)V −A , Q10 = (s̄ibj)V −A

∑

q
3
2eq(q̄jqi)V −A ,

Q7γ =
−e

8π2
mb s̄σµν(1 + γ5)F

µνb , Q8g =
−gs

8π2
mb s̄σµν(1 + γ5)G

µνb , (2)

where (q̄1q2)V ±A = q̄1γµ(1±γ5)q2, i, j are colour indices, eq are the electric charges of the
quarks in units of |e|, and a summation over q = u, d, s, c, b is implied. (The definition of
the dipole operators Q7γ and Q8g corresponds to the sign convention iDµ = i∂µ +gsAµ

ata
for the gauge-covariant derivative.) The Wilson coefficients are calculated at a high scale
µ ∼ MW and evolved down to a characteristic scale µ ∼ mb using next-to-leading order
renormalization-group equations. The essential problem obstructing the calculation of
nonleptonic decay amplitudes resides in the evaluation of the hadronic matrix elements
of the local operators contained in the effective Hamiltonian.

Applying the QCD factorization formula and neglecting power-suppressed effects, the
matrix elements of the effective weak Hamiltonian can be written in the form [14, 15]

〈πK|Heff |B̄〉 =
GF√

2

∑

p=u,c

λp 〈πK|Tp + T ann
p |B̄〉 , (3)

where

Tp = a1(πK) δpu (ūb)V −A ⊗ (s̄u)V −A

+ a2(πK) δpu (s̄b)V −A ⊗ (ūu)V −A

+ a3(πK)
∑

q (s̄b)V −A ⊗ (q̄q)V −A

+ ap
4(πK)

∑

q (q̄b)V −A ⊗ (s̄q)V −A

+ a5(πK)
∑

q (s̄b)V −A ⊗ (q̄q)V +A

4
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µ ∼ MW and evolved down to a characteristic scale µ ∼ mb using next-to-leading order
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nonleptonic decay amplitudes resides in the evaluation of the hadronic matrix elements
of the local operators contained in the effective Hamiltonian.

Applying the QCD factorization formula and neglecting power-suppressed effects, the
matrix elements of the effective weak Hamiltonian can be written in the form [14, 15]
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GF√
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+ a2(πK) δpu (s̄b)V −A ⊗ (ūu)V −A

+ a3(πK)
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Tree 
operators

Penguin 
operators

EW penguin 
operators

5

no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

often neglected

4

rameters and the graphical amplitudes [23, 47, 48].) In
section III we give the expressions of the decay ampli-
tudes in SCET. We begin by giving the general expres-
sions at leading order in the power expansion, but correct
to all orders in αs and comment about new information
that arises from combining these SCET relations with the
SU(3) flavor symmetry. We then use the Wilson coeffi-
cients at leading order in αs(mb) and give expressions for
the decay amplitudes at that order. We finish this sec-
tion with a discussion of our estimate of the uncertainties
which arise from unknown O(αs(mb)) and O(ΛQCD/E)
corrections. A detailed discussion of the implications of
the SCET results is given in section IV. We emphasize
that within factorization the ratios of color suppressed
and color allowed amplitudes (C/T and EWC/EWT )
can naturally be of order unity at LO in the power count-
ing, contrary to conventional wisdom [32]. We also per-
form an error analysis for the Lipkin and CP-sum rules in
B → Kπ decays, and discuss predictions for the relative
signs of the CP asymmetries. We then review the infor-
mation one can obtain from only the decays B → ππ,
before we discuss in detail the implications of the SCET
analysis for the decays B → Kπ and B → KK.

II. THEORY INPUT

A. The electroweak Hamiltonian

The electroweak Hamiltonian describing ∆b = 1 tran-
sitions b → f is given by

HW =
GF√

2

∑

p=u,c

λ(f)
p

(

C1O
p
1 + C2O

p
2 +

10,7γ,8g
∑

i=3

CiOi

)

, (5)

where the CKM factor is λ(f)
p = VpbV ∗

pf . The standard
basis of operators are (with Op

1 ↔ Op
2 relative to [49])

Op
1 = (pb)V−A(fp)V−A, Op

2 = (pβbα)V−A(fαpβ)V−A,

O3,4 =
{

(pb)V−A(qq)V−A , (fβbα)V−A(qαqβ)V−A

}

,

O5,6 =
{

(fb)V−A(qq)V+A , (fβbα)V−A(qαqβ)V+A

}

,

O7,8 =
3eq

2

{

(fb)V−A(qq)V+A , (fβbα)V−A(qαqβ)V+A

}

,

O9,10 =
3eq

2

{

(fb)V−A(qq)V−A , (fβbα)V−A(qαqβ)V−A

}

,

O7γ,8g = −
mb

8π2
f σµν{eFµν , gGa

µνT a}(1+γ5)b . (6)

Here the sum over q = u, d, s, c, b is implicit, α, β are
color indices and eq are electric charges. The ∆S = 0
and ∆S = 1 effective Hamiltonian is obtained by setting
f = d and f = s in Eqs. (5,6), respectively. The Wilson
coefficients are known to NLL order [49]. At LL order
taking αs(mZ) = 0.118, mt = 174.3, and mb = 4.8 GeV
gives C7γ(mb) = −0.316, C8g(mb) = −0.149 and

C1−10(mb) = {1.107 ,−.249 , .011 ,−.026 , .008 ,−.031 ,

4.9×10−4 , 4.6×10−4 ,−9.8×10−3 , 1.9×10−3} . (7)

Below the scale µ ∼ mb one can integrate out the bb̄
pairs in the operators O3−10. The remaining operators
have only one b-quark field, and sums over light quarks
q = u, d, s, c. This gives rise to a threshold correction to
the Wilson coefficients,

C−
i (mb) = C+

i (mb)
[

1 +
αs(mb)

4π
δrT

s +
α

4π
δrT

c

]

, (8)

where C+ and C− are the Wilson coefficients with and
without dynamical b quarks, and δrT

s and δrT
c are given

in Eqs. (VII.31) and (VII.32) of [49]. This changes the
numerical values of the Wilson coefficients by less than
2%. Integrating out dynamical b quarks allows for addi-
tional simplifications for the electroweak penguin opera-
tors, since now for the flavor structure we have

3

2
eq(f̄ b)(q̄q) =

1

2
(f̄b)(2uū − dd̄ − ss̄ + 2cc̄) (9)

=
3

2
(f̄ b)(uū) +

3

2
(f̄ b)(cc̄) −

1

2

∑

q=u,d,s,c

(f̄ b)(qq̄) .

The operators O9 and O10 have the regular (V −A)×
(V −A) Dirac structure, and can therefore be written as
linear combinations of the operators O1−4,

O9 =
3

2
Ou

2 +
3

2
Oc

2 −
1

2
O3 , (10)

O10 =
3

2
Ou

1 +
3

2
Oc

1 −
1

2
O4 .

This is not possible for the operators O7 and O8, which
have (V −A)×(V +A) Dirac structure. Thus, integrating
out the dynamical b quarks removes two operators from
the basis. To completely integrate out the dynamics at
the scale mb we must match onto operators in SCET, as
discussed in section III below.

B. Counting of Parameters

Without any theoretical input, there are 4 real
hadronic parameters for each decay mode (one complex
amplitude for each CKM structure) minus one overall
strong phase. In addition, there are the weak CP vio-
lating phases that we want to determine. For B → ππ
decays there are a total of 11 hadronic parameters, while
in B → Kπ decays there are 15 hadronic parameters.

Using isospin, the number of parameters is reduced.
Isospin gives one amplitude relation for both the ππ
and the Kπ system, thus eliminating 4 hadronic pa-
rameters in each system (two complex amplitudes for
each CKM structure). This leaves 7 hadronic parame-
ters for B → ππ and 11 for B → Kπ. An alternative
way to count the number of parameters is to construct
the reduced matrix elements in SU(2). The electroweak
Hamiltonian mediating the decays B → ππ has up to
three light up or down quarks. Thus, the operator is
either ∆I = 1/2 or ∆I = 3/2. The two pions are ei-
ther in an I = 0 or I = 2 state (the I = 1 state is

λp = VpbV
∗
ps



Flavor topologies

• Can use isospin and SU(3) to relate different 
amplitudes. 
• In practice, such analyses often neglect some 

contributions. 

Flavor symmetry - SU(3)
The B decay amplitude can be given as a sum over graphical amplitudes

B

b u

!

! B

b d

!

!

B !

!

W

6 ‘graphical’ amplitudes = 5 
reduced matrix elements

B

!

!

B

!

!

B

!

!

W

(equivalent to SU(3) Wigner-Eckart)

Tree (T) Color-suppressed (C) Penguin (P)

W-exchange (E) Weak annihilation (A) Penguin annihilation 
(PA)

Gronau, Hernandez, 
London,Rosner

+ EWPs



Factorization theorem for B→M1 M2

• When factorization theorems for exclusive 
processes were first discussed around 1980, 
people were hoping for a factorization 
theorem of the form:

B

Fj

T I
ij

ΦM2

M1

M2

+ T II
i

ΦM1

ΦM2

ΦB

B

M1

M2

Figure 1: Graphical representation of the factorization formula. Only one of the two
form-factor terms in (3) is shown for simplicity.

meson or two light mesons. Our goal is to show that, up to power corrections
of order ΛQCD/mb, the transition matrix element of an operator Oi in the
effective weak Hamiltonian can be written as

〈M1M2|Oi|B〉 =
∑

j

FB→M1
j (m2

2) fM2

∫ 1

0
du T I

ij(u)ΦM2(u)

if M1 is heavy and M2 is light,

〈M1M2|Oi|B〉 =
∑

j

FB→M1
j (m2

2) fM2

∫ 1

0
du T I

ij(u)ΦM2(u) + (M1 ↔ M2)

+ fBfM1fM2

∫ 1

0
dξ du dv T II

i (ξ, u, v)ΦB(ξ)ΦM1(v)ΦM2 (u)

if M1 and M2 are both light. (3)

Here FB→M
j (m2) denotes a B → M form factor evaluated at q2 = m2, m1,2

are the light meson masses, and ΦX(u) is the light-cone distribution amplitude
for the quark–antiquark Fock state of the meson X . These non-perturbative
quantities will be defined below. T I

ij(u) and T II
i (ξ, u, v) are hard-scattering

functions, which are perturbatively calculable. The factorization formula in
its general form is represented graphically in Fig. 1.

The second equation in (3) applies to decays into two light mesons, for
which the spectator quark in the B meson (in the following simply referred
to as the “spectator quark”) can go to either of the final-state mesons. An
example is the decay B− → π0K−. If the spectator quark can go only to

6
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Factorization theorem for B→M1 M2

• Does not work!

• Kernel T behaves as

• Pion LCDA goes like
• Convolution integral does not exist

Figure 4: Diagrams at order αs that need not be calculated.

interaction it is absorbed as a soft quark by the recoiling meson. This is evi-
dently a contribution to the left-hand diagram of Fig. 1, involving the B → D
form factor. The hard subprocess in Fig. 3 is just given by the insertion of
a four-fermion operator, and hence it does not depend on the longitudinal
momentum fraction u of the two quarks that form the emitted π−. Conse-
quently, the lowest-order contribution to T I

ij(u) in (3) is independent of u, and
the u-integral reduces to the normalization condition for the pion distribution
amplitude. The result is, not surprisingly, that the factorization formula repro-
duces the result of naive factorization if we neglect gluon exchange. Note that
the physical picture underlying this lowest-order process is that the spectator
quark (which is part of the B → D form factor) is soft. If this is the case, the
hard-scattering approach misses the leading contribution to the non-leptonic
decay amplitude.

Putting together all factors relevant to power counting, we find that in
the heavy-quark limit the decay amplitude for a decay into a heavy-light final
state (in which the spectator quark is absorbed by the heavy meson) scales as

A(B̄d → D+π−) ∼ GF m2
b FB→D(0) fπ ∼ GF m2

b ΛQCD . (13)

Other contributions must be compared with this scaling rule.

Factorizable diagrams

In order to justify naive factorization as the leading term in an expansion in αs

and ΛQCD/mb, we must show that radiative corrections are either suppressed
in one of these two parameters, or already contained in the definition of the
form factor and the pion decay constant. Consider the graphs shown in Fig. 4.
The first three diagrams are part of the form factor and do not contribute to
the hard-scattering kernels. Since the first and third diagrams contain leading
contributions from the region in which the gluon is soft, they should not be
considered as corrections to Fig. 3. However, this is of no consequence since
these soft contributions are absorbed into the physical form factor.

The fourth diagram in Fig. 4 is also factorizable. In general, this graph
would split into a hard contribution and a contribution to the evolution of the
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x pπ

(1− x) pπ

T ∝ 1
x2

for x→ 0

φπ(x) ∝ x for x→ 0

∫ 1

0
dx T (x) φπ(x) =∞

B π

π



Factorization theorem by BBNS
• Give up on complete factorization and allow for a 

nonfactorizable form factor piece!

• This works, but the hope for complete factorization 
is still alive...
• “pQCD framework”: resummation of perturbative corrections 

to kernel will cure divergence in convolution integral

• “Zero-bin subtraction”: divergence in convolution is UV. 
Renormalize it away.

B

Fj

T I
ij

ΦM2

M1

M2

+ T II
i

ΦM1

ΦM2

ΦB

B

M1

M2

Figure 1: Graphical representation of the factorization formula. Only one of the two
form-factor terms in (3) is shown for simplicity.

meson or two light mesons. Our goal is to show that, up to power corrections
of order ΛQCD/mb, the transition matrix element of an operator Oi in the
effective weak Hamiltonian can be written as

〈M1M2|Oi|B〉 =
∑

j

FB→M1
j (m2

2) fM2

∫ 1

0
du T I

ij(u)ΦM2(u)

if M1 is heavy and M2 is light,

〈M1M2|Oi|B〉 =
∑

j

FB→M1
j (m2

2) fM2

∫ 1

0
du T I

ij(u)ΦM2(u) + (M1 ↔ M2)

+ fBfM1fM2

∫ 1

0
dξ du dv T II

i (ξ, u, v)ΦB(ξ)ΦM1(v)ΦM2 (u)

if M1 and M2 are both light. (3)

Here FB→M
j (m2) denotes a B → M form factor evaluated at q2 = m2, m1,2

are the light meson masses, and ΦX(u) is the light-cone distribution amplitude
for the quark–antiquark Fock state of the meson X . These non-perturbative
quantities will be defined below. T I

ij(u) and T II
i (ξ, u, v) are hard-scattering

functions, which are perturbatively calculable. The factorization formula in
its general form is represented graphically in Fig. 1.

The second equation in (3) applies to decays into two light mesons, for
which the spectator quark in the B meson (in the following simply referred
to as the “spectator quark”) can go to either of the final-state mesons. An
example is the decay B− → π0K−. If the spectator quark can go only to
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SCET analysis

• Same factorization theorem as BBNS.
• TI = HI. Kernel TII factorizes into hard- and jet-

function:                              

φπ φπ

φπφB

HI HII

JFB→π(q2 = 0)

not factorized 
by BBNS

+

J ≡ J(αs(
√

mbΛQCD))
HII ≡ HII(αs(mb))



Hadronic input
• Need hadronic input to make 

predictions:
• LCDA’s for all the mesons

• Very little is known about light meson 
LCDAs.

• Essentially no information on B-meson 
LCDA

• Form factors FB→M (q2=0) 
• New exp. results on B→π l ν give fairly 

accurate value for |Vub| FB→π (0)
• other form factors are poorly known.



Phenomenological analysis: BBNS
φπ φπ

φπφB

HI HII

J

Hard kernels
to O(αs)

Jet-function ∝ αs(µi)

FB→π(q2 = 0)

LCDAs and F(q2=0) from
 light-cone sum rules

Estimate dominant power corrections.

+

model dependence



Phenomenological analysis:“SCET approach”

Leave (charming) penguins unfactorized.
Neglect all power corrections.

φπ φπ

φπφB

HI HII

JFB→π(q2 = 0)

tree level

from fit to                . BPRS find two parts  
are comparable in size! αs(µi) suppression?                   

B → ππ

+

Bauer, Pirjol, Stewart, Rothstein ‘04



Comparison
• “SCET approach”: 

Model independent; no dependence 
on light-cone sum rules.
might not be very precise: no power 
and no perturbative corrections. 
(BBNS find large power corrections.)
More modest/less predictive. 
Penguins from fit, strong phases from 
fit, ...



Numerical results: BPRS

• Red quantities are input.
• Their fit gives two solutions γ=59o, 83o
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FIG. 3: Comparison of theory and experiment for all available
data in B → ππ and B → Kπ decays, with γ = 83◦. The 8
pieces of data in red (below the dashed line) have been used
to determine the SCET hadronic parameters ζBπ , ζBπ

J , Pππ,
PKπ and |PKK|, with ζBK and ζBK

J fixed as described in
the text. The data above the line are predictions. The CP
asymmetry in B− → K0π− is expected to be small, but its
numerical value is not predicted reliably.

V. CONCLUSIONS

Decays of B mesons to two pseudoscalar mesons pro-
vide a rich environment to test our understanding of the
standard model and to look for physics beyond the stan-
dard model. The underlying electroweak physics mediat-
ing these decays are contained in the Wilson coefficients
of the electroweak Hamiltonian as well as CKM matrix
elements. In order to test cleanly the standard model
predictions for these short distance parameters, one re-
quires a good understanding of the QCD matrix elements
of the effective operators, which can not be calculated
perturbatively.

At the present time, there are 5 well measured (with
< 100% uncertainty) observables in B → ππ, 5 in
B → Kπ and 2 in B → KK. Using only isospin symme-
try (with corrections suppressed by mu,d/Λ), the number
of hadronic parameters required to describe these decays
is 7, 11 and 11, respectively. The number of hadronic
parameters can be reduced by two in the ππ system,
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FIG. 4: Same as Fig.3, but with γ = 59◦.

if one drops the two operators O7 and O8, which have
small Wilson coefficients in the standard model. If one
is willing to take SU(3) (an expansion in ms/Λ) as a
good symmetry of QCD, the combined B → ππ/Kπ sys-
tem is described by 15 parameters, while the B → KK
system adds another 4 parameters. Neglecting O7 and
O8 with SU(3) reduces the number of parameters in the
ππ/Kπ/KK̄ system to 15. Thus, at the present time
there are more hadronic parameters than there are well
measured observables.

In this paper we have studied these decays in a model
independent way using SCET. This analysis exploits that
the hadronic scale Λ in QCD is much smaller than both
in the large mass of the heavy quark and the large energy
of the two light mesons. It follows that at leading order
in the power expansion in ΛQCD/Q, where Q ∼ mb, E,
and using SU(2), there are four hadronic parameters de-
scribing B → ππ, five additional parameters describing
B → Kπ and three additional parameters describing
B → KK. In the limit of exact SU(3) the four param-
eters describing B → ππ are enough to describe all of
these B → PP decays in SCET.

In SCET the electroweak penguin operators O7,8 can
be included without adding additional hadronic param-
eters. One can use the 5 pieces of well measured ππ
data to determine the four hadronic parameters and the
weak angle γ [45], and with the current data one finds



Numerical results BBNS
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CP asymmetries: BBNS

!
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Semileptonic data
• Important difference is relative size of factorizable 

part and form factor part.
• BPRS fit gives the two parts are of similar size, but 

factorizable part is proportional                      
• Slope of B→π form factor at q2=0 gives information 

on relative size.
• Factorization test

• Naive factorization: R = 0.62±0.07
• BBNS: R = 0.66+0.13-0.08

• BPRS: R = 1.27+0.22-0.29

tightly constrained by the data than by the dispersive bounds. This leads to the happy con-
clusion that the errors on |Vub| do not depend on the chosen parameterization or the exact
value of the bound, and the analysis lends itself to a straightforward statistical interpretation.
Secondly, other important observables, such as the slope of the form factor, are sensitive to
the addition of more parameters than can be constrained by the data, but are allowed by the
dispersive bound. Since this bound is overestimated, presumably by orders of magnitude, a
reliance on this procedure would lead to the pessimistic conclusion that almost no information
at all can be extracted from the data for these quantities. In such cases, we propose to use
tighter bounds, which follow from the scaling behavior of the bounded quantity in the heavy
quark limit.

Apart from establishing order-of-magnitude estimates for the bounds in (8) and (9) by
heavy-quark power counting, none of the above analysis relies on heavy-quark, large-recoil
or chiral expansions, or on the associated heavy-quark, soft-collinear or chiral effective field
theories. However, the semileptonic data can be used to test predictions from these effective
field theories, and to determine low-energy parameters that can be used as inputs to the
calculation of other processes. For example, using the experimental result Br(B− → π−π0) =
(5.5 ± 0.6) × 10−6 [17] together with |Vub|F+(0) from (13), we find

Γ(B− → π−π0)

dΓ(B̄0 → π+"−ν̄)/dq2|q2=0
= 0.76 +0.22

−0.18 ± 0.05 GeV2 , (14)

where the first error is experimental, and the second is due to the form-factor shape uncertainty
in (13). Such ratios provide a strong test of factorization [18]. The leading-order prediction
for this ratio, corresponding to the “naive” factorization picture where hard-scattering terms
are neglected, yields 16π2f 2

π |Vud|2(C1 + C2)2/3 = 0.62± 0.07 GeV2. This uncertainty includes
only the effects of varying the renormalization scale of the leading-order weak-interaction
coefficients [19] between mb/2 and 2mb. This may be compared to the prediction of Beneke
and Neubert [20] who use QCD factorization theorems for two-body decays to work beyond
leading order and include the effects of hard-scattering terms, obtaining for the same ratio,
0.66 +0.13

−0.08 GeV2. The uncertainty in their prediction is dominated by the uncertainty in the
light-cone distribution amplitudes (LCDAs) of the B- and π-mesons. Bauer et al. [21, 13]
evaluate the same factorization theorems using a different strategy: they use experimental
results for other B → ππ decays to determine the part involving the LCDAs from data, which
is possible if all power corrections, and perturbative corrections of order αs(mb), are neglected.
For the ratio (14) they find 1.27+0.22

−0.29 GeV2, where we display only experimental errors. The
semileptonic data provides important information on otherwise poorly constrained hadronic
parameters entering these processes.

As a second application, the parameter δ measuring the relative size of hard-scattering and
soft-overlap contributions in the B → π form factor can be related to the slope of the form
factor at q2 = 0 [12]. Extrapolated to zero recoil, the lattice calculations in [5, 6] give for the
slope of the F0 form factor, β ≡ [(m2

B − mπ)2F ′
0(0)/F+(0)]−1 = 1.2 ± 0.1. Together with (13)

this yields

δ ≡ 1 − m2
B − m2

π

F+(0)

(
dF+

dq2

∣∣∣∣
q2=0

− dF0

dq2

∣∣∣∣
q2=0

)

= 0.4 ± 0.6 ± 0.1 ± 0.4 , (15)
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R =

αs(
√

mbΛ)



Summary
• Hadronic B-decays are a challenge for theory!
• Lots of progress in our understanding, but 

many basic questions are still open:
• Relative size of the two parts in factorization 

formula.
• Does the B→M form factor factorize?
• Hadronic input.
• Size of power corrections.
• Charming penguins.
• ....

• Keep posted!


